OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 13 — May. 1, 1999
  • pp: 2916–2926

Multicomponent Blood Analysis by Near-Infrared Raman Spectroscopy

Andrew J. Berger, Tae-Woong Koo, Irving Itzkan, Gary Horowitz, and Michael S. Feld  »View Author Affiliations


Applied Optics, Vol. 38, Issue 13, pp. 2916-2926 (1999)
http://dx.doi.org/10.1364/AO.38.002916


View Full Text Article

Acrobat PDF (185 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the use of Raman spectroscopy to measure the concentration of many important constituents (analytes) in serum and whole blood samples at physiological concentration in vitro across a multipatient data set. A near-infrared (830-nm) diode laser generates Raman spectra that contain superpositions of Raman signals from different analytes. Calibrations for glucose, cholesterol, urea, and other analytes are developed by use of partial least-squares cross validation. We predict six analytes in serum with significant accuracy in a 66-patient data set, using 60-s spectra. The calibrations are shown to be fairly robust against system drift over the span of seven weeks. In whole blood, a preliminary analysis yields accurate predictions of some of the same analytes and also hematocrit. The results hold promise for potential medical applications.

© 1999 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.5660) Medical optics and biotechnology : Raman spectroscopy

Citation
Andrew J. Berger, Tae-Woong Koo, Irving Itzkan, Gary Horowitz, and Michael S. Feld, "Multicomponent Blood Analysis by Near-Infrared Raman Spectroscopy," Appl. Opt. 38, 2916-2926 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-13-2916


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. Bauer and T. Floyd, “Monitoring of glucose in biological fluids by Fourier-transform infrared spectrometry with a cylindrical internal reflectance cell,” Anal. Chim. Acta 197, 295–301 (1987).
  2. Y. Mendelson, A. C. Clermont, R. A. Peura, and B.-C. Lin, “Blood glucose measurement by multiple attenuated total reflection and infrared absorption spectroscopy,” IEEE Trans. Biomed. Eng. 37, 458–465 (1990).
  3. H. M. Heise, R. Marbach, T. Koschinsky, and F. A. Gries, “Multicomponent assay for blood substrates in human plasma by mid-infrared spectroscopy and its evaluation for clinical analysis,” Appl. Spectrosc. 48, 85–95 (1994).
  4. H. M. Heise and A. Bittner, “Investigation of experimental errors in the quantitative analysis of glucose in human blood plasma by ATR-IR spectroscopy,” J. Mol. Struct. 348, 21–24 (1995).
  5. K. J. Ward, D. M. Haaland, M. R. Robinson, and R. P. Eaton, “Post-prandial blood glucose determination by quantitative mid-infrared spectroscopy,” Appl. Spectrosc. 46, 959–965 (1992).
  6. R. Simhi, D. Bunimovich, B.-A. Sela, and A. Katzir, “Multicomponent analysis of human blood using fiberoptic evanescent wave spectroscopy,” in Medical Sensors II and Fiber Optic Sensors, F. Baldini, P. R. Coulet, A. M. Verga Scheggi, and O. S. Wolfbeis, eds., Proc. SPIE 2331, 166–172 (1994).
  7. G. Budínová, J. Salva, and K. Volka, “Application of molecular spectroscopy in the mid-infrared region to the determination of glucose and cholesterol in whole blood and in blood serum,” Appl. Spectrosc. 51, 631–635 (1997).
  8. M. A. Arnold and G. W. Small, “Determination of physiological levels of glucose in an aqueous matrix with digitally filtered Fourier transform near-infrared spectra,” Anal. Chem. 62, 1457–1464 (1990).
  9. F. M. Ham, I. N. Kostanic, G. M. Cohen, and B. R. Gooch, “Determination of glucose concentrations in an aqueous matrix from NIR spectra using optimal time-domain filtering and partial least-squares regression,” IEEE Trans. Biomed. Eng. 44, 475–484 (1997).
  10. G. Spanner and R. Niessner, “New concept for the non-invasive determination of physiological glucose concentration using modulated laser diodes,” Fresenius J. Anal. Chem. 354, 306–310 (1996).
  11. D. M. Haaland, M. R. Robinson, G. W. Koepp, E. V. Thomas, and R. P. Eaton, “Reagentless near-infrared determination of glucose in whole blood using multivariate calibration,” Appl. Spectrosc. 46, 1575–1578 (1992).
  12. E. Peuchant, C. Salles, and R. Jensen, “Determination of serum cholesterol by near-infrared reflectance spectrometry,” Anal. Chem. 59, 1816–1819 (1987).
  13. J. W. Hall and A. Pollard, “Near-infrared spectrophotometry: a new dimension in clinical chemistry,” Clin. Chem. 38, 1623–1631 (1992).
  14. A. Bittner, R. Marbach, and H. M. Heise, “Multivariate calibration for protein, cholesterol and triglycerides in human plasma using short-wave near-infrared spectrometry,” J. Mol. Struct. 349, 341–344 (1995).
  15. R. Marbach, T. Koschinsky, F. A. Gries, and H. M. Heise, “Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip,” Appl. Spectrosc. 47, 875–881 (1993).
  16. M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38, 1618–1622 (1992).
  17. K.-U. Jagemann, C. Fischbacher, K. Danzer, U. A. Müller, and B. Mertes, “Application of near-infrared spectroscopy for non-invasive determination of blood/tissue glucose using neural networks,” Z. Phys. Chem. 191, 179–190 (1995).
  18. G. L. Coté, M. D. Fox, and R. B. Northrop, “Noninvasive optical polarimetric glucose sensing using a true phase measurement technique,” IEEE Trans. Biomed. Eng. 39, 752–756 (1992).
  19. T. W. King, G. L. Coté, R. McNichols, and M. J. Goetz, “Multispectral polarimetric glucose detection using a single Pockels cell,” Opt. Eng. 33, 2746–2753 (1994).
  20. B. D. Cameron and G. L. Coté, “Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach,” IEEE Trans. Biomed. Eng. 44, 1221–1227 (1997).
  21. M. Kohl, M. Cope, M. Essenpreis, and D. Bocker, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett. 19, 2170–2172 (1994).
  22. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062–2064 (1994).
  23. J. R. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, and H. Orskov, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997).
  24. G. Spanner and R. Niessner, “Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head,” Fresenius J. Anal. Chem. 355, 327–328 (1996).
  25. S. Y. Wang, C. E. Hasty, P. A. Watson, J. P. Wicksted, R. D. Stith, and W. F. March, “Analysis of metabolites in aqueous solutions by using laser Raman spectroscopy,” Appl. Opt. 32, 925–929 (1993).
  26. J. P. Wicksted, R. J. Erckens, M. Motamedi, and W. F. March, “Raman spectroscopy studies of metabolic concentrations in aqueous solutions and aqueous humor specimens,” Appl. Spectrosc. 49, 987–993 (1995).
  27. M. J. Goetz Jr., G. L. Coté, R. Erckens, W. March, and M. Motamedi, “Application of a multivariate technique to Raman spectra for quantification of body chemicals,” IEEE Trans. Biomed. Eng. 42, 728–731 (1995).
  28. R. J. Erckens, M. Motamedi, W. F. March, and J. P. Wicksted, “Raman spectroscopy for non-invasive characterization of ocular tissue: potential for detection of biological molecules,” J. Raman Spectrosc. 28, 293–299 (1997).
  29. X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, and Y. Ozaki, “A highly sensitive, compact Raman system without a spectrometer for quantitative analysis of biological samples,” Vib. Spectrosc. 14, 199–205 (1997).
  30. X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, and Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13, 83–89 (1996).
  31. X. Dou, Y. Yamaguchi, H. Yamamoto, H. Uenoyama, and Y. Ozaki, “Biological applications of anti-Stokes Raman spectroscopy: quantitative analysis of glucose in plasma and serum by a highly sensitive multichannel Raman spectrometer,” Appl. Spectrosc. 50, 1301–1306 (1996).
  32. R. V. Tarr and P. G. Steffes, “Non-invasive blood glucose measurement system and method using stimulated Raman spectroscopy,” U.S. patent 5,243,983 (14 September 1993).
  33. R. V. Tarr and P. G. Steffes, “The noninvasive measure of d-glucose in the ocular aqueous humor using stimulated Raman spectroscopy,” IEEE/LEOS Newslett. 12(2), 22–27 (1998).
  34. A. J. Berger, Y. Wang, and M. S. Feld, “Rapid, noninvasive concentration measurements of aqueous biological analytes by near-infrared Raman spectroscopy,” Appl. Opt. 35, 209–212 (1996).
  35. A. J. Berger, I. Itzkan, and M. S. Feld, “Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy,” Spectrochim. Acta 53, 287–292 (1997).
  36. R. J. Henry, Clinical Chemistry: Principles and Techniques (Harper and Row, New York, 1964), pp. 650–651.
  37. W. T. Caraway, “Carbohydrates,” in Fundamentals of Clinical Chemistry, N. W. Tietz, ed. (Saunders, Philadelphia, Pa., 1970), pp. 154–156.
  38. D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
  39. P. Geladi and B. R. Kowalski, “Partial least-squares regression: a tutorial,” Anal. Chim. Acta 185, 1–17 (1986).
  40. E. Sanchez and B. R. Kowalski, “Tensorial calibration. 1. First-order calibration,” J. Chemom. 2, 247–263 (1988).
  41. A. J. Berger and M. S. Feld, “Analytical method of calculating chemometric prediction error,” Appl. Spectrosc. 51, 725–732 (1997).
  42. G. Small and M. Arnold, “Data handling issues for near-infrared glucose measurements,” IEEE/LEOS Newsletter 12(2), 16–17 (1998).
  43. P. R. Carey, Biochemical Applications of Raman and Resonance Raman Spectroscopies (Academic, New York, 1982), pp. 71–79.
  44. S. Krimm, “Raman spectra and the conformations of biological macromolecules,” in Biological Applications of Raman Spectroscopy, T. G. Spiro, ed. (Wiley, New York, 1987), Vol. 1, pp. 1–46.
  45. K. Faber and B. R. Kowalski, “Improved prediction error estimates for multivariate calibration by correcting for the measurement error in the reference values,” Appl. Spectrosc. 51, 660–665 (1997).
  46. W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care 10, 622–628 (1987).
  47. C. E. Speicher and J. W. Smith, Jr., Choosing Effective Laboratory Tests (Saunders, Philadelphia, Pa., 1983), pp. 357–365.
  48. L. P. Skendzel, “How physicians use laboratory tests,” in Using the Clinical Laboratory in Medical Decision-Making, G. D. Lundberg, ed. (American Society of Clinical Pathologists, Chicago, 1984), Chap. 30, pp. 243–250.
  49. A. J. Berger, T.-W. Koo, I. Itzkan, and M. S. Feld, “An enhanced algorithm for linear multivariate calibration,” Anal. Chem. 70, 623–628 (1998).
  50. J. J. Qu, O. L. Yau, S. M. Yau, D. Suria, and B. C. Wilson, “Measurements of therapeutic drugs and substances of abuse in human body fluids by near-IR laser Raman spectroscopy with new algorithms,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems, D. A. Benaron, R. D. Bucholz, S. T. Charles, W. S. Grundfest, M. W. Vannier, and T. Vo-Dinh, eds., Proc. SPIE 3595, (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited