OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 13 — May. 1, 1999
  • pp: 2950–2961

Spatially variant regularization improves diffuse optical tomography

Brian W. Pogue, Troy O. McBride, Judith Prewitt, Ulf L. Österberg, and Keith D. Paulsen  »View Author Affiliations


Applied Optics, Vol. 38, Issue 13, pp. 2950-2961 (1999)
http://dx.doi.org/10.1364/AO.38.002950


View Full Text Article

Enhanced HTML    Acrobat PDF (1492 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffuse tomography with near-infrared light has biomedical application for imaging hemoglobin, water, lipids, cytochromes, or exogenous contrast agents and is being investigated for breast cancer diagnosis. A Newton–Raphson inversion algorithm is used for image reconstruction of tissue optical absorption and transport scattering coefficients from frequency-domain measurements of modulated phase shift and light intensity. A variant of Tikhonov regularization is examined in which radial variation is allowed in the value of the regularization parameter. This method minimizes high-frequency noise in the reconstructed image near the source–detector locations and can produce constant image resolution and contrast across the image field.

© 1999 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(110.7050) Imaging systems : Turbid media
(170.6960) Medical optics and biotechnology : Tomography
(170.7050) Medical optics and biotechnology : Turbid media

History
Original Manuscript: November 4, 1998
Revised Manuscript: February 8, 1999
Published: May 1, 1999

Citation
Brian W. Pogue, Troy O. McBride, Judith Prewitt, Ulf L. Österberg, and Keith D. Paulsen, "Spatially variant regularization improves diffuse optical tomography," Appl. Opt. 38, 2950-2961 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-13-2950


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. M. Nioka, S. Orel, M. Shnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994). [CrossRef] [PubMed]
  2. B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, “Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast,” Phil. Trans. R. Soc. Lond. B 352, 707–716 (1997). [CrossRef]
  3. T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygen saturation in tissue,” (submitted to Appl. Opt.).
  4. H. Miyake, S. Nioka, A. Zaman, D. S. Smith, B. Chance, “The detection of cytochrome oxidase heme iron and copper absorption in the blood-perfused and blood-free brain in normoxia and hypoxia,” Anal. Biochem. 192, 149–155 (1991). [CrossRef] [PubMed]
  5. A. Villringer, B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997). [CrossRef] [PubMed]
  6. L. W. Lo, W. T. Jenkins, S. A. Vinogradov, S. M. Evans, D. F. Wilson, “Oxygen distribution in the vasculature of mouse tissue in vivo measured using a near-infrared phosphor,” Adv. Exp. Med. Biol. 411, 577–583 (1997). [CrossRef]
  7. J. R. Singer, F. A. Grunbaum, P. D. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990). [CrossRef] [PubMed]
  8. S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991). [CrossRef]
  9. B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995). [CrossRef] [PubMed]
  10. K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995). [CrossRef] [PubMed]
  11. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996). [CrossRef]
  12. J. Chang, H. L. Graber, R. L. Barbour, “Luminescence optical tomography of dense scattering media,” J. Opt. Soc. Am. A 14, 288–299 (1997). [CrossRef]
  13. S. R. Arridge, M. Schweiger, “Image reconstruction in optical tomography,” Phil. Trans. R. Soc. Lond. B 352, 717–726 (1997). [CrossRef]
  14. W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues. I. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988). [CrossRef] [PubMed]
  15. M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–168 (1990). [CrossRef]
  16. A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28, 2210–2215 (1989). [CrossRef] [PubMed]
  17. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  18. J. Fishkin, E. Gratton, M. J. van de Ven, W. W. Mantulin, “Diffusion of intensity modulated near infrared light in turbid media,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 122–135 (1991). [CrossRef]
  19. H. W. Engl, W. Grever, “Using the L-curve for determining optimal regularization parameters,” Numer. Math. 69, 25–31 (1994). [CrossRef]
  20. A. Neumaier, “Solving ill-conditioned and singular linear systems: a tutorial on regularization,” SIAM Rev. 40, 636–666 (1998). [CrossRef]
  21. H.-S. Wong, L. Guan, “Adaptive regularization in image restoration by unsupervised learning,” J. Electr. Imag. 7, 211–221 (1998). [CrossRef]
  22. W. Freeden, F. Schneider, “Regularization wavelets and multiresolution,” Inverse Probl. 14, 225–243 (1998). [CrossRef]
  23. B. W. Pogue, M. S. Patterson, T. J. Farrell, “Forward and inverse calculations for 3-D frequency-domain diffuse optical tomography,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 328–339 (1995). [CrossRef]
  24. S. R. Arridge, M. Schweiger, “Inverse methods for optical tomography,” in Information Processing in Medical Imaging, Thirteenth Information Processing and Medical Imaging Conference (Springer-Verlag, Flagstaff, Ariz., 1993), pp. 259–277. [CrossRef]
  25. B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997). [CrossRef]
  26. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  27. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991). [CrossRef] [PubMed]
  28. K. D. Paulsen, H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt. 35, 3447–3458 (1996). [CrossRef] [PubMed]
  29. H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Frequency-domain optical image reconstruction for breast imaging: initial evaluation in multi-target tissue-like phantoms,” Med. Phys. 25, 183–193 (1997). [CrossRef]
  30. H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Frequency-domain optical image reconstruction in turbid media: an experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997). [CrossRef] [PubMed]
  31. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B 352, 661–668 (1997). [CrossRef]
  32. A. E. Profio, G. A. Navarro, “Scientific basis of breast diaphanography,” Med. Phys. 16, 60–65 (1989). [CrossRef] [PubMed]
  33. M. M. Ter-Pogossian, M. E. Phelps, G. L. Brownell, J. R. Cox, D. O. Davis, R. G. Evens, eds., Reconstruction Tomography in Diagnostic Radiology and Nuclear Medicine (University Park Press, Baltimore, 1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited