OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 14 — May. 10, 1999
  • pp: 2991–2996

Ultraviolet-Cured Polymer Microlens Arrays

Takashi Okamoto, Miwa Mori, Tamae Karasawa, Seiichiro Hayakawa, Iwao Seo, and Heihachi Sato  »View Author Affiliations


Applied Optics, Vol. 38, Issue 14, pp. 2991-2996 (1999)
http://dx.doi.org/10.1364/AO.38.002991


View Full Text Article

Acrobat PDF (401 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for fabricating microlens arrays that uses the contraction effect of UV-curable photopolymers is presented. Lenses with diameters ranging from 0.2 to 2 mm that were made under different conditions are optically evaluated. The optimum conditions for producing low f-number lenses are discussed.

© 1999 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3950) Other areas of optics : Micro-optics

Citation
Takashi Okamoto, Miwa Mori, Tamae Karasawa, Seiichiro Hayakawa, Iwao Seo, and Heihachi Sato, "Ultraviolet-Cured Polymer Microlens Arrays," Appl. Opt. 38, 2991-2996 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-14-2991


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Oikawa and K. Iga, “Distributed-index planar microlens,” Appl. Opt. 21, 1052–1056 (1982).
  2. N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass,” Appl. Opt. 24, 2520–2525 (1985).
  3. N. F. Borrelli and D. L. Morse, “Microlens arrays produced by a photolytic technique,” Appl. Opt. 27, 476–479 (1988).
  4. M. Oikawa, H. Nemoto, K. Hamanaka, and E. Okuda, “High numerical aperture planar microlens with swelled structure,” Appl. Opt. 29, 4077–4080 (1990).
  5. M. Fritze, M. B. Stern, and P. W. Wyatt, “Laser-fabricated glass microlens arrays,” Opt. Lett. 23, 141–143 (1998).
  6. M. Wakaki, Y. Komachi, and G. Kanai, “Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser,” Appl. Opt. 37, 627–631 (1998).
  7. P. Pantelis and D. J. McCartney, “Polymer microlens arrays,” Pure Appl. Opt. 3, 103–108 (1994).
  8. G. Y. Yoon, T. Jitsuno, M. Nakatsuka, and S. Nakai, “Shack Hartmann wave-front measurement with a large F-number plastic microlens array,” Appl. Opt. 35, 188–192 (1996).
  9. S. Lazare, J. Lopez, J. Turlet, M. Kufner, S. Kufner, and P. Chavel, “Microlenses fabricated by ultraviolet excimer laser irradiation of poly(methyl methacrylate) followed by styrene diffusion,” Appl. Opt. 35, 4471–4475 (1996).
  10. S. Calixto and G. P. Padilla, “Micromirrors and microlenses fabricated on polymer materials by means of infrared radiation,” Appl. Opt. 35, 6126–6130 (1996).
  11. S. Calixto and M. S. Scholl, “Relief optical microelements fabricated with dichromated gelatin,” Appl. Opt. 36, 2101–2106 (1997).
  12. B. P. Keyworth, D. J. Corazza, J. N. McMullin, and L. Mabbott, “Single-step fabrication of refractive microlens arrays,” Appl. Opt. 36, 2198–2202 (1997).
  13. C. Croutxé-Barghorn, S. Calixto, and D. J. Lougnot, “Self-developing photopolymer for the fabrication of relief micro-optical elements,” in Photosensitive Optical Materials and Devices, M. P. Andrews, ed., 2998, 222–231 (1997).
  14. T. Okamoto, R. Ohmori, S. Hayakawa, I. Seo, and H. Sato, “Ultraviolet-cured polymer micro-optical elements,” Opt. Rev. 4, 516–520 (1997).
  15. S. Masuda, T. Nose, and S. Sato, “Optical properties of an UV-cured liquid-crystal microlens array,” Appl. Opt. 37, 2067–2073 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited