OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 14 — May. 10, 1999
  • pp: 3030–3038

Spatial-mode control of vertical-cavity lasers with micromirrors fabricated and replicated in semiconductor materials

Fredrik Nikolajeff, Todd A. Ballen, James R. Leger, Anand Gopinath, Tzu-Chen Lee, and Robert C. Williams  »View Author Affiliations

Applied Optics, Vol. 38, Issue 14, pp. 3030-3038 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (800 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Micromirrors were fabricated in gallium phosphide by mass transport to provide spatial-mode control of vertical-cavity surface-emitting lasers (VCSEL’s). The concave mirrors were used in an external-cavity configuration to provide spatial filtering in the far field. Single-mode cw lasing was demonstrated in 15-µm-diameter VCSEL’s with currents as high as 6 times threshold. The fabrication process was extended to micromirrors in gallium arsenide by use of a replication and dry-etch transfer process.

© 1999 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(220.4000) Optical design and fabrication : Microstructure fabrication
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(330.6110) Vision, color, and visual optics : Spatial filtering
(350.3950) Other areas of optics : Micro-optics

Original Manuscript: August 20, 1998
Revised Manuscript: January 4, 1999
Published: May 10, 1999

Fredrik Nikolajeff, Todd A. Ballen, James R. Leger, Anand Gopinath, Tzu-Chen Lee, and Robert C. Williams, "Spatial-mode control of vertical-cavity lasers with micromirrors fabricated and replicated in semiconductor materials," Appl. Opt. 38, 3030-3038 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith, “High single-transverse-mode output from external-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993). [CrossRef]
  2. G. C. Wilson, M. A. Hadley, J. S. Smith, K. Y. Lau, “High single-mode output power from compact external microcavity surface-emitting laser diode,” Appl. Phys. Lett. 63, 3265–3267 (1993). [CrossRef]
  3. B. J. Koch, J. R. Leger, A. Gopinath, Z. Wang, “Single-mode vertical cavity surface emitting laser by graded-index lens spatial filtering,” Appl. Phys. Lett. 70, 2359–2361 (1997). [CrossRef]
  4. R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, S. E. Callis, “Transverse mode control of vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993). [CrossRef]
  5. G. Q. Chen, J. R. Leger, A. Gopinath, “Angular filtering of spatial modes in a vertical cavity surface emitting laser by a Fabry–Perot etalon,” Appl. Phys. Lett. 74, 1069–1071 (1999). [CrossRef]
  6. J. R. Leger, D. Chen, K. Dai, “High modal discrimination in a Nd:YAG laser using internal phase gratings,” Opt. Lett. 19, 1976–1978 (1994). [CrossRef] [PubMed]
  7. Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990). [CrossRef]
  8. T. A. Ballen, J. R. Leger, “Mass-transport fabrication of off-axis and prismatic gallium-phosphide optics,” Appl. Opt. 38, 3025–3029 (1999). [CrossRef]
  9. Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994). [CrossRef]
  10. J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995). [CrossRef]
  11. Y. C. Chung, Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting lasers with external optical feedback,” IEEE Photon. Technol. Lett. 3, 597–599 (1991). [CrossRef]
  12. Z. L. Liau, D. E. Mull, D. L. Hovey, “Solid state research,” (Lincoln Laboratory, MIT, Cambridge, Mass., 1994).
  13. E. M. Strzelecka, G. D. Robinson, L. A. Coldren, E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectr. Eng. 35, 385–388 (1997). [CrossRef]
  14. H. Sankur, R. Hall, E. Motamedi, W. Gunning, W. Tennant, “Fabrication of microlens arrays by reactive ion milling,” in Minaturized Systems with Micro-Optics and Micromechanics, M. Motamedi, ed., Proc. SPIE2687, 150–155 (1996). [CrossRef]
  15. J. Bengtsson, N. Eriksson, A. Larsson, “Small-feature-size fan-out kinoform etched in GaAs,” Appl. Opt. 35, 801–806 (1996). [CrossRef] [PubMed]
  16. J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Nanofabrication of subwavelength, binary, high-efficiency diffractive optical elements in GaAs,” J. Vac. Sci. Technol. B 13, 2705–270 (1995). [CrossRef]
  17. F. Nikolajeff, S. Hard, B. Curtis, “Diffractive microlenses replicated in fused silica for excimer laser beam homogenizing,” Appl. Opt. 36, 8481–8489 (1997). [CrossRef]
  18. Y. Z. Juang, Y. K. Su, S. C. Shei, B. C. Fang, “Comparing reactive ion etching of III–V compounds in Cl2/BCl3/Ar and CCl2F2/BCl3/Ar discharges,” J. Vac. Sci. Technol. A 12, 75–82 (1994). [CrossRef]
  19. J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, F. Ren, “Plasma etching of III–V semiconductors in BCl3 chemistries: GaAs and related compounds,” Plasma Chem. Plasma Process. 17, 155–167 (1997). [CrossRef]
  20. Z. L. Liau, D. E. Mull, “Wafer fusion: a novel technique for optoelectronic device fabrication and monolithic integration,” Appl. Phys. Lett. 56, 737–739 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited