OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 14 — May. 10, 1999
  • pp: 3046–3052

Path-reversed substrate- guided-wave optical interconnects for wavelength-division demultiplexing

Jian Liu and Ray T. Chen  »View Author Affiliations

Applied Optics, Vol. 38, Issue 14, pp. 3046-3052 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (340 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A path-reversed substrate-guided-wave holographic interconnection scheme is investigated for a wavelength-division demultiplexing application. Using a beveled edge of a waveguiding plate allows optical signals to be coupled into the waveguiding plate and then to be coupled out of the plate by a waveguide hologram. Theoretical analyses are given for dispersion, bandwidth, and recording parameters of various guided-wave holographic gratings. A device is fabricated with a 45° incident angle and a 45° diffraction angle by use of a 20-µm photopolymer film. The 3-dB bandwidth of the device is measured to be 20 nm. Four-channel wavelength demultiplexing is demonstrated at 796, 798, 800, and 802 nm with no cross talk observed. A one-to-five cascaded four-channel wavelength-division demultiplexer with ±5% energy uniformity under s polarization is also demonstrated to increase the user-sharing capacity. Twenty fan-out channels (5 × 4) are achieved experimentally.

© 1999 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4250) Fiber optics and optical communications : Networks
(090.0090) Holography : Holography

Original Manuscript: July 31, 1998
Revised Manuscript: December 3, 1998
Published: May 10, 1999

Jian Liu and Ray T. Chen, "Path-reversed substrate- guided-wave optical interconnects for wavelength-division demultiplexing," Appl. Opt. 38, 3046-3052 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Pu, D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996). [CrossRef] [PubMed]
  2. S. Reinhorn, Y. Amitai, A. A. Friesem, “Compact planar optical correlator,” Opt. Lett. 22, 925–927 (1997). [CrossRef] [PubMed]
  3. S. Reinhorn, S. Gorodeisky, A. A. Friesem, Y. Amitai, “Fourier transformation with a planar holographic doublet,” Opt. Lett. 20, 495–497 (1995). [CrossRef] [PubMed]
  4. J. Liu, C. Zhao, R. T. Chen, “Implementation of optical perfect shuffle with substrate-guided wave optical interconnects,” IEEE Photon. Technol. Lett. 9, 946–948 (1997). [CrossRef]
  5. J. Liu, C. Zhao, R. Lee, R. T. Chen, “Cross-link optimized cascaded volume hologram array with energy-equalized one-to-many surface-normal fan-outs,” Opt. Lett. 22, 1024–1026 (1997). [CrossRef] [PubMed]
  6. J. Liu, Z. Fu, R. T. Chen, “Polarization sensitivity of photopolymer-based volume holograms for one-to-many surface normal optical interconnects,” Opt. Eng. 37, 660–665 (1998). [CrossRef]
  7. J. Liu, R. T. Chen, “A two-dimensional dual-wavelength routing network with 1-to-10 cascaded fanouts,” IEEE Photon. Technol. Lett. 10, 238–240 (1997).
  8. M. M. Li, R. T. Chen, “Five-channel surface-normal wavelength-division demultiplexer using substrate-guided waves in conjunction with a polymer-based littrow hologram,” Opt. Lett. 20, 797–799 (1995). [CrossRef] [PubMed]
  9. M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988). [CrossRef]
  10. H. Takahashi, S. Suzuki, K. Kato, I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26, 87–88 (1990). [CrossRef]
  11. C. Dragon, C. H. Henry, I. P. Kaminow, R. C. Kistler, “Efficient multichannel integrated optics star coupler on silicon,” IEEE Photon. Technol. Lett. 1, 241–243 (1989). [CrossRef]
  12. C. Dragon, “An N × N optical multiplexer using a palnar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991). [CrossRef]
  13. C. Dragon, C. A. Edwards, R. C. Kistler, “Integrated optics N × N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3, 896–899 (1991). [CrossRef]
  14. M. K. Smit, C. van Dam, “PHASAR-based WDM devices: principles, design and applications,” IEEE J. Select. Topics Quantum Electron. 2, 236–250 (1996). [CrossRef]
  15. K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photo-sensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978). [CrossRef]
  16. B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett. 3, 66–68 (1978). [CrossRef] [PubMed]
  17. F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388–390 (1995). [CrossRef]
  18. I. Baumann, J. Seifert, W. Nowak, M. Sauer, “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996). [CrossRef]
  19. K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997). [CrossRef]
  20. G. W. Neudeck, J. Denton, J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, “A high speed Si photodiode by epitaxial lateral growth,” paper presented at the Fifty-sixth Annual Device Research Conference, Charlottesville, Va., 22–24 June 1998.
  21. C. Schow, J. Schaub, R. Li, J. Qi, J. C. Campbell, “A 1 Gb/s monolithically integrated silicon NMOS optical receiver,” IEEE Quantum Electron. (to be published).
  22. S. Hu, J. Ko, L. A. Coldren, “High-performance densely packed vertical-cavity photonic integrated emitter arrays for direct-coupled WDM applications,” IEEE Photon. Technol. Lett. 10, 766–768 (1998). [CrossRef]
  23. D. L. Huffaker, D. G. Deppe, “Multiwavelength, densely packed 2 × 2 vertical-cavity surface-emitting laser array fabricated using selective oxidation,” IEEE Photon. Technol. Lett. 7, 858–860 (1996). [CrossRef]
  24. S. Y. Hu, J. Ko, O. Sjolund, L. A. Coldren, “Optical crosstalk in monolithically integrated multiple wavelength vertical-cavity laser arrays for multimode WDM local area networks,” Electron. Lett. 34, 676–678 (1998). [CrossRef]
  25. Y. K. Tsai, Y. T. Huang, D. C. Su, “Multiband wavelength-division demultiplexing with a cascaded substrate-mode grating structure,” Appl. Opt. 34, 5582–5588 (1995). [CrossRef] [PubMed]
  26. W. Gambogi, K. Steijn, S. Mackara, T. Duzik, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994). [CrossRef]
  27. U. Rhee, H. J. Caulfield, C. S. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995). [CrossRef] [PubMed]
  28. S. Piazzolla, B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 21, 1075–1077 (1996). [CrossRef] [PubMed]
  29. H. J. Zhou, V. Morozov, J. Neff, “Characterization of DuPont photopolymers in infrared light for free-space optical interconnects,” Appl. Opt. 34, 7457–7459 (1995). [CrossRef] [PubMed]
  30. R. R. A. Syms, Practical Volume Holography (Clarendon, Oxford, 1990).
  31. J. E. Ludman, “Approximate bandwidth and diffraction efficiency in thick holograms,” Am. J. Phys. 50, 244–246 (1982). [CrossRef]
  32. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Tech. J. 13, 2909–2947 (1969). [CrossRef]
  33. T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985). [CrossRef]
  34. J. Liu, R. T. Chen, “Substrate-guided-wave-based optical interconnects for multi-wavelength routing and distribution networks,” J. Lightwave Technol. 17, 354–361 (1999). [CrossRef]
  35. T. Nakaya, Y. Katoh, T. Kubota, M. Tabeda, “Diffraction efficiency of a grating coupler for an array illuminator,” Appl. Opt. 35, 3891–3898 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited