OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 15 — May. 20, 1999
  • pp: 3141–3151

Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition

Wenbo Sun, Qiang Fu, and Zhizhang Chen  »View Author Affiliations

Applied Optics, Vol. 38, Issue 15, pp. 3141-3151 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A three-dimensional finite-difference time-domain (FDTD) program has been developed to provide a numerical solution for light scattering by nonspherical dielectric particles. The perfectly matched layer (PML) absorbing boundary condition (ABC) is used to truncate the computational domain. As a result of using the PML ABC, the present FDTD program requires much less computer memory and CPU time than those that use traditional truncation techniques. For spheres with particle-size parameters as large as 40, the extinction and absorption efficiencies from the present FDTD program match the Mie results closely, with differences of less than ∼1%. The difference in the scattering phase function is typically smaller than ∼5%. The FDTD program has also been checked by use of the exact solution for light scattering by a pair of spheres in contact. Finally, applications of the PML FDTD to hexagonal particles and to spheres aggregated into tetrahedral structures are presented.

© 1999 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3920) Atmospheric and oceanic optics : Meteorology
(280.1100) Remote sensing and sensors : Aerosol detection
(290.1090) Scattering : Aerosol and cloud effects
(290.5850) Scattering : Scattering, particles

Original Manuscript: August 3, 1998
Revised Manuscript: January 6, 1999
Published: May 20, 1999

Wenbo Sun, Qiang Fu, and Zhizhang Chen, "Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition," Appl. Opt. 38, 3141-3151 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986). [CrossRef]
  2. D. O. Starr, “A cirrus cloud experiment: intensive field observations planned for FIRE,” Bull. Am. Meteorol. Soc. 68, 119–124 (1987). [CrossRef]
  3. L. M. Miloshevich, A. J. Heymsfield, P. M. Norris, “Microphysical measurements in cirrus clouds from ice crystal replicator sonders launched during FIRE II,” in Proceedings of the 11th International Conference on Clouds and Precipitation (Elsevier, New York, 1992), pp. 525–528.
  4. G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1753 (1990). [CrossRef]
  5. Y. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus infrared radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992). [CrossRef]
  6. Q. Fu, W. B. Sun, P. Yang, “On modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths,” J. Atmos. Sci. (to be published).
  7. M. I. Mishchenko, L. D. Travis, D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles. A review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996). [CrossRef]
  8. G. Mie, “Beigrade zur optik truber medien, speziell kolloidaler metallosungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908). [CrossRef]
  9. G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996). [CrossRef]
  10. S. Asano, G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29–49 (1975). [CrossRef] [PubMed]
  11. J. R. Wait, “Scattering of a plane wave from a circular dielectric cylinder at oblique incidence,” Can. J. Phys. 33, 189–195 (1955). [CrossRef]
  12. Lord Rayleigh, “The dispersal of light by a dielectric cylinder,” Philos. Mag. 36, 365–376 (1918). [CrossRef]
  13. A. Mugnai, W. J. Wiscombe, “Scattering from nonspherical Chebyshev particles,” Appl. Opt. 25, 1235–1244 (1986). [CrossRef]
  14. M. I. Mishchenko, L. D. Travis, A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927–4940 (1996). [CrossRef] [PubMed]
  15. H. Laitinen, K. Lumme, “T-matrix method for general star-shaped particles: first results,” J. Quant. Spectrosc. Radiat. Transfer 60, 325–334 (1998). [CrossRef]
  16. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989). [CrossRef]
  17. P. Yang, K. N. Liou, “Geometric-optics integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996). [CrossRef] [PubMed]
  18. A. Macke, J. Muller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996). [CrossRef]
  19. P. Barber, C. Yeh, “Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies,” Appl. Opt. 14, 2864–2872 (1975). [CrossRef] [PubMed]
  20. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  21. D. L. Mitchell, “How appropriate is Mie theory for predicting the radiative properties of atmospheric particles?” GEWEX News 7–11 (February1995).
  22. W. B. Sun, “An investigation of infrared radiative properties of cirrus clouds,” M.S. thesis (Dalhousie University, Halifax, N.S., 1997).
  23. Q. Fu, P. Yang, W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 11, 2223–2236 (1998). [CrossRef]
  24. E. M. Purcell, C. P. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 196, 705–714 (1973). [CrossRef]
  25. S. B. Singham, C. F. Bohren, “Light scattering by an arbitrary particle: a physical reformation of the coupled dipole method,” Opt. Lett. 12, 10–12 (1987). [CrossRef] [PubMed]
  26. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  27. P. J. Flatau, G. L. Stephens, B. T. Draine, “Light scattering by rectangular solids in the discrete-dipole approximation: a new algorithm exploiting the block-toeplitz structure,” J. Opt. Soc. Am. A 7, 593–600 (1990). [CrossRef]
  28. K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994). [CrossRef]
  29. B. T. Draine, “The discrete dipole approximation for studying light scattering by irregular targets,” in Proceedings of Conference on Light Scattering by Nonspherical Particles (American Meteorological Society, Boston, 1998).
  30. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  31. J. Xu, Z. Chen, J. Chuang, “Numerical implementation of PML in the TLM-based finite-difference time-domain grids,” IEEE Trans. Microwave Theory Tech. 45, 1263–1266 (1997).
  32. J. Xu, J. G. Ma, Z. Chen, “Numerical validations of a nonlinear PML scheme for absorption of nonlinear electromagnetic waves,” IEEE Trans. Microwave Theory Tech. 46, 1752–1758 (1998). [CrossRef]
  33. C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, T. Tflove, “Ultrawide-band absorbing boundary condition for termination of wave guide structures in FD-TD simulations,” IEEE Microwave Guided Wave Lett. 4, 344–346 (1994). [CrossRef]
  34. R. Holland, “Finite-difference time domain (FDTD) analysis of magnetic diffusion,” IEEE Trans. Electromagn. Compat. 36, 32–39 (1994). [CrossRef]
  35. P. Yang, K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996). [CrossRef]
  36. Z. Liao, H. L. Wong, B. Yang, Y. Yuan, “A transmitting boundary for transient wave analyses,” Sci. Sin. 27, 1063–1076 (1984).
  37. P. Yang, K. N. Liou, “An efficient algorithm for truncating spatial domain in modeling lighting scattering by finite-difference technique,” J. Comput. Phys. 140, 346–369 (1998). [CrossRef]
  38. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  39. J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996). [CrossRef]
  40. D. S. Katz, E. T. Thiele, A. Taflove, “Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes,” IEEE Microwave Guided Wave Lett. 4, 268–270 (1994). [CrossRef]
  41. A. Taflove, M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech. MTT-23, 623–630 (1975). [CrossRef]
  42. D. M. Sullivan, “A simplified PML for use with the FDTD method,” IEEE Microwave Guided Wave Lett. 6, 97–99 (1996). [CrossRef]
  43. B. Engquist, A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comput. 31, 629–651 (1971). [CrossRef]
  44. G. Mur, “Absorbing boundary condition for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981). [CrossRef]
  45. A. Bayliss, E. Turkel, “Radiation boundary conditions for wavelike equations,” Commun. Pure Appl. Math. 33, 707–725 (1980). [CrossRef]
  46. R. L. Higdon, “Absorbing boundary conditions for difference approximations to the multidimensional wave equation,” Math. Comput. 47, 437–459 (1986).
  47. S. A. Schelkunoff, Electromagnetic Waves (Van Nostrand, New York, 1943).
  48. D. E. Merewether, R. Fisher, F. W. Smith, “On implementing a numeric Huygen’s source in a finite difference program to illustrate scattering bodies,” IEEE Trans. Nucl. Sci. NS-27, 1829–1833 (1980). [CrossRef]
  49. P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm,” Appl. Opt. 36, 2818–2824 (1997). [CrossRef] [PubMed]
  50. A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984). [CrossRef]
  51. G. N. Plass, G. W. Kattawa, “Radiative transfer in water and ice clouds in the visible and infrared region,” Appl. Opt. 10, 738–749 (1968). [CrossRef]
  52. W. P. Arnott, Y. Liu, J. Hallet, “Unreasonable effectiveness of mimicking measured infrared extinction by hexagonal ice crystals with Mie ice spheres,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 216–218.
  53. D. L. Mitchell, A. Macke, Y. G. Liu, “Modeling cirrus clouds. Part II: Treatment of radiative properties,” J. Atmos. Sci. 53, 2967–2988 (1996). [CrossRef]
  54. Z. Sun, K. P. Shine, “Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed phase clouds,” J. Climate 8, 1874–1888 (1995). [CrossRef]
  55. A. Ono, “The shape and riming properties of ice crystals in natural clouds,” J. Atmos. Sci. 26, 138–147 (1969). [CrossRef]
  56. A. H. Auer, D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27, 919–926 (1970). [CrossRef]
  57. R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micrometer-sized airborne biological particles,” Aerosol. Sci. Technol. 28, 95–104 (1998). [CrossRef]
  58. G. Videen, W. B. Sun, Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5–9 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited