OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 15 — May. 20, 1999
  • pp: 3152–3156

Nondiffracting Narrow Light Beam with Small Atmospheric Turbulence-Influenced Propagation

Tadashi Aruga, Shu Wing Li, Shin Yoshikado, Masao Takabe, and Ruiming Li  »View Author Affiliations


Applied Optics, Vol. 38, Issue 15, pp. 3152-3156 (1999)
http://dx.doi.org/10.1364/AO.38.003152


View Full Text Article

Acrobat PDF (306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A narrow light beam that propagates in the atmosphere with less disturbance than conventional light beams is introduced. The operating method and features of the newly proposed long-range nondiffracting beam (LRNB) are briefly demonstrated. Some experimental results of the atmospheric propagation of this beam at a distance of 500 m are shown in comparison with a conventional collimated beam and a focused beam. The results and related analyses show that the LRNB is much less influenced by atmospheric turbulence than other beams and suggest that the LRNB can apply to many fields.

© 1999 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3310) Atmospheric and oceanic optics : Laser beam transmission

Citation
Tadashi Aruga, Shu Wing Li, Shin Yoshikado, Masao Takabe, and Ruiming Li, "Nondiffracting Narrow Light Beam with Small Atmospheric Turbulence-Influenced Propagation," Appl. Opt. 38, 3152-3156 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-15-3152


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. V. E. Zuev, Propagation of Visible and Infrared Radiation in the Atmosphere (Wiley, New York, 1974).
  2. E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1976).
  3. V. I. Tatarskii, A. Ishimaru, and V. U. Zavorotny, eds., Wave Propagation in Random Media (Scintillation), Vol. PM09 of SPIE Monographs and Handbooks (SPIE Press, Bellingham, Wash., 1993).
  4. J. I. Davis, “Consideration of atmospheric turbulence in laser systems design,” Appl. Opt. 5, 139–147 (1966).
  5. D. H. Höhn, “Effects of atmospheric turbulence on the transmission of a laser beam at 6328 Å. 2: Frequency spectra,” Appl. Opt. 5, 1433–1436 (1966).
  6. D. L. Fried and J. B. Seidman, “Laser-beam scintillation in the atmosphere,” J. Opt. Soc. Am. 57, 181–185 (1967).
  7. A. L. Buck, “Effects of the atmosphere on laser beam propagation,” Appl. Opt. 6, 703–708 (1967).
  8. S. S. Khmelevtsov, “Propagation of laser radiation in a turbulent atmosphere,” Appl. Opt. 12, 2412–2433 (1973).
  9. J. A. Dowling and P. M. Livingston, “Behavior of focused beams in atmospheric turbulence: measurements and comments on the theory,” J. Opt. Soc. Am. 63, 846–858 (1973).
  10. S. F. Clifford, “Physical propaties of the atmosphere in relation to laser probing,” Opt. Quantum Electron. 8, 95–104 (1976).
  11. P. O. Minott, “Scintillation in an earth-to-space propagation path,” J. Opt. Soc. Am. 62, 885–888 (1972).
  12. J. L. Bufton, “Scintillation statistics measured in an earth–space–earth retroreflector link,” Appl. Opt. 16, 2654–2660 (1977).
  13. T. Aruga, K. Araki, R. Hayashi, T. Iwabuchi, M. Takahashi, and M. Nakamura, “Earth-to-geosynchronous satellite laser beam transmission,” Appl. Opt. 24, 53–56 (1985).
  14. M. Toyoda, M. Toyoshima, T. Takahashi, M. Shikatani, Y. Arimoto, K. Araki, and T. Aruga, “Ground to ETS-VI narrow laser beam transmission,” in Free-Space Laser Communiation Technologies VIII, G. S. Mecherle, ed., Proc. SPIE 2699, 71–80 (1996).
  15. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 ?m using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
  16. Y. Zhao and R. M. Hardesty, “Technique for correcting effects of long CO2 laser pulses in aerosol-backscattered coherent lidar returns,” Appl. Opt. 27, 2719–2729 (1988).
  17. R. T. Menzies, “Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from earth orbit,” Appl. Opt. 25, 2546–2553 (1986).
  18. A. K. Majumdar, “Optical communication between aircraft in low-visibility atmosphere using diode lasers,” Appl. Opt. 24, 3659–3665 (1985).
  19. K. A. Winick, “Atmospheric turbulence-induced signal fades on optical heterodyne communication links,” Appl. Opt. 25, 1817–1825 (1986).
  20. See, for example, R. Q. Fugate, “Laser beacon adaptive optics,” Opt. Photon. News 4, 14–19 (1993).
  21. T. Aruga, “Generation of long-range nondiffracting narrow light beams,” Appl. Opt. 36, 3762–3768 (1997).
  22. J. Durnin, J. J. Miceli, Jr., and H. J. Eberley, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
  23. A. J. Cox and D. C. Dibble, “Constant-axial-intensity nondiffracting beam,” J. Opt. Soc. Am. A 9, 282–286 (1992).
  24. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3961 (1988).
  25. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited