OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 15 — May. 20, 1999
  • pp: 3157–3165

Degree of Linear Polarization in Spectral Radiances from Water-Viewing Infrared Radiometers

Joseph A. Shaw  »View Author Affiliations


Applied Optics, Vol. 38, Issue 15, pp. 3157-3165 (1999)
http://dx.doi.org/10.1364/AO.38.003157


View Full Text Article

Acrobat PDF (1144 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Infrared radiances from water become partially polarized at oblique viewing angles through both emission and reflection. I describe computer simulations that show how the state of polarization for water varies with environmental conditions over a wavelength range of 3–15 ?m with 0.05-?m resolution. Polarization at wavelengths longer than approximately 4 ?m generally is negative (p, or vertical) and increases with incidence angle up to approximately 75°, beyond which the horizontally polarized reflected atmospheric radiance begins to dominate the surface emission. The highest p polarization (~4–10%) is found in the atmospheric window regions of approximately 4–5 and 8–14 ?m. In the 3–5-?m spectral band, especially between 3 and 4 ?m, reflected atmospheric radiance usually is greater than surface emission, resulting in a net s polarization (horizontal). The results of these simulations agree well with broadband measurements of the degree of polarization for a water surface viewed at nadir angles of 0–75°.

© 1999 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.7340) Atmospheric and oceanic optics : Water
(260.3060) Physical optics : Infrared
(260.5430) Physical optics : Polarization
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6340) Spectroscopy : Spectroscopy, infrared

Citation
Joseph A. Shaw, "Degree of Linear Polarization in Spectral Radiances from Water-Viewing Infrared Radiometers," Appl. Opt. 38, 3157-3165 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-15-3157


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. O. Sandus, “A review of emission polarization,” Appl. Opt. 4, 1634–1642 (1965).
  2. F. F. Hall, Jr., “The effect of cirrus clouds on 8–13 ?m infrared sky radiance,” Appl. Opt. 7, 891–898 (1968).
  3. F. F. Hall, Jr., “A physical model of cirrus 8–13 ?m infrared radiance,” Appl. Opt. 7, 2264–2269 (1968).
  4. W. G. Egan, Photometry and Polarization in Remote Sensing (Elsevier, New York, 1985), pp. 337–354.
  5. M. Sidran, “Broadband reflectance and emissivity of specular and rough water surfaces,” Appl. Opt. 20, 3176–3183 (1981).
  6. Y. Takano and K. N. Liou, “Infrared polarization signature from cirrus clouds,” Appl. Opt. 31, 1916–1919 (1992).
  7. J. A. Shaw, “The impact of polarization on infrared sea-surface temperature sensing,” in IGARSS ’98 (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 496–498.
  8. R. D. Tooley, “Man-made target detection using infrared polarization,” in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. SPIE 1166, 52–58 (1989).
  9. T. J. Rogne, F. G. Smith, and J. E. Rice, “Passive target detection using polarized components of infrared signatures,” in Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray, R. A. Chipman and J. W. Morris, eds., Proc. SPIE 1317, 242–251 (1990).
  10. A. W. Cooper, E. C. Crittenden, Jr., E. A. Milne, P. L. Walker, E. Moss, and D. Gregoris, “Mid and far infrared measurements of sun glint from the sea surface,” in Optics of the Air-Sea Interface, L. Estep, ed., Proc. SPIE 1749, 176–185 (1992).
  11. A. W. Cooper, W. J. Lentz, P. L. Walker, and P. M. Chan, “Infrared polarization measurements of ship signatures and background contrast,” in Characterization and Propagation of Sources and Backgrounds, W. R. Watkins, ed., Proc. SPIE 2223, 300–309 (1994).
  12. P. L. Walker, W. J. Lentz, and A. W. Cooper, “Atmospheric and sea state dependence of polarized infrared contrast,” in Targets and Backgrounds: Characterization and Representation, W. R. Watkins, ed., Proc. SPIE 2469, 393–403 (1995).
  13. A. W. Cooper, W. J. Lentz, and P. L. Walker, “Infrared polarization ship images and contrast in the MAPTIP experiment,” in Image Propagation through the Atmosphere, J. Daintyll and R. Bissonnette, eds., Proc. SPIE 2828, 85–96 (1996).
  14. C. S. L. Chun, F. A. Sadjadi, and D. Ferris, “Automatic target recognition using polarization-sensitive, thermal imaging,” in Automatic Object Recognition V, F. A. Sadjadi, ed., Proc. SPIE 2485, 353–364 (1995).
  15. D. L. Jordan, G. D. Lewis, and E. Jakeman, “Emission polarization of roughened glass and aluminum surfaces,” Appl. Opt. 35, 3583–3590 (1996).
  16. M. Partridge and R. C. Saull, “Three-dimensional surface reconstruction using emission polarization,” in Image and Signal Processing for Remote Sensing II, J. Desachy, ed., Proc. SPIE 2579, 92–103 (1995).
  17. F. Sadjadi and C. Chun, “Machine recognition of objects using IR polarimetry,” Automatic Object Recognition VI, F. A. Sadjadi, ed., Proc. SPIE 2756, 53–59 (1996).
  18. A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” AFGL Technical Report GL-TR-89–0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).
  19. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-?m wavelength region,” Appl. Opt. 12, 555–563 (1973).
  20. W. M. Irvine and J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
  21. D. Friedman, “Infrared characteristics of ocean water (1.5–15 ?m),” Appl. Opt. 8, 2073–2078 (1969).
  22. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1991), p. 40.
  23. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” AFGL Technical Report AFGL-TR-86–0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1986).
  24. Y. Han, J. A. Shaw, J. H. Churnside, P. D. Brown, and S. A. Clough, “Infrared spectral radiance measurements in the tropical Pacific atmosphere,” J. Geophys. Res. 102, 4353–4356 (1997).
  25. J. A. Shaw, J. B. Snider, J. H. Churnside, and M. D. Jacobson, “Comparison of infrared atmospheric brightness temperatures measured by a Fourier transform spectrometer and filter radiometer,” J. Atmos. Oceanic Technol. 12, 1124–1128 (1995).
  26. E. P. Shettle, “Models of aerosols, clouds and precipitation for atmospheric propagation studies,” in Atmospheric Propagation in the UV, Visible, IR and mm-Wave Region and Related Systems Aspects (Advisory Group for Aerospace Research and Development, Paris, 1989), pp. 15–3–15–13.
  27. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
  28. J. A. Shaw and J. H. Churnside, “Scanning-laser glint measurements of sea-surface slope statistics,” Appl. Opt. 36, 4202–4213 (1997).
  29. X. Wu and W. L. Smith, “Emissivity of rough sea surface for 8–13 ?m: modeling and verification,” Appl. Opt. 36, 2609–2619 (1997).
  30. K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988).
  31. P. D. Watts, M. R. Allen, and T. J. Nightingale, “Wind speed effects on sea surface emission and reflection for the Along Track Scanning Radiometer,” J. Atmos. Oceanic Technol. 13, 126–141 (1996).
  32. J. A. Shaw, “Glittering light on water,” Opt. Photon. News 10 (3), 43–45, 68 (1999).
  33. J. W. Salisbury, A. Basu, and E. M. Fischer, “Thermal infrared spectra of lunar soils,” Icarus 130, 125–139 (1997).
  34. F. H. Murcray, D. G. Murcray, and W. J. Williams, “Infrared emissivity of lunar surface features. 1. Balloon-borne observations,” J. Geophys. Res. 75, 2662–2669 (1970).
  35. H. K. Kieffer and R. L. Wildey, “Establishing the moon as a spectral radiance standard,” J. Atmos. Oceanic Technol. 13, 360–375 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited