OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 15 — May. 20, 1999
  • pp: 3282–3284

Thermal coefficients of the expansion and refractive index in YAG

Rosalind Wynne, John L. Daneu, and Tso Yee Fan  »View Author Affiliations


Applied Optics, Vol. 38, Issue 15, pp. 3282-3284 (1999)
http://dx.doi.org/10.1364/AO.38.003282


View Full Text Article

Enhanced HTML    Acrobat PDF (64 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The thermal expansion coefficient and dn/dT are measured by interferometry techniques in undoped YAG below 300 K. The thermal expansion coefficient at 125 K is measured to be 2.70 × 10-6 K-1 and dn/dT at 633 nm is 2.5 × 10-6 K-1, compared with 7 × 10-6 K-1 and 9 × 10-6 K-1 for these quantities at 300 K.

© 1999 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.6810) Lasers and laser optics : Thermal effects
(160.3380) Materials : Laser materials
(160.4760) Materials : Optical properties

History
Original Manuscript: November 23, 1998
Revised Manuscript: February 22, 1999
Published: May 20, 1999

Citation
Rosalind Wynne, John L. Daneu, and Tso Yee Fan, "Thermal coefficients of the expansion and refractive index in YAG," Appl. Opt. 38, 3282-3284 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-15-3282


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Y. Fan, T. Crow, B. Hoden, “Cooled Yb:YAG for high-power solid state lasers,” in Airborne Laser Advanced Technology, T. D. Steiner, P. H. Merritt, eds., Proc. SPIE3381, 200–205 (1998). [CrossRef]
  2. D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997). [CrossRef]
  3. D. C. Brown, “Nonlinear thermal distortion in YAG rod amplifiers,” IEEE J. Quantum Electron. 34, 2383–2392 (1998). [CrossRef]
  4. D. C. Brown, “Nonlinear thermal and stress effects and scaling behavior of YAG slab amplifiers,” IEEE J. Quantum Electron. 34, 2393–2402 (1998). [CrossRef]
  5. T. Y. Fan, J. L. Daneu, “Thermal coefficients of the optical path length and refractive index of YAG,” Appl. Opt. 37, 1635–1637 (1998). [CrossRef]
  6. W. J. Croft, “Low temperature thermal expansion of yttrium aluminum garnet,” Am. Mineral. 50, 1634–1636 (1965).
  7. P. H. Klein, W. J. Croft, “Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77°–300 °K,” J. Appl. Phys. 38, 1603–1607 (1967). [CrossRef]
  8. Note that in Refs. 6 and 7 the tabulated thermal expansion coefficients at low temperature are much larger than indicated by the tabulated lattice constants. This is so because the tabulated expansion coefficients were not calculated correctly in Refs. 6 and 7. They appear to have been calculated with the equation α(TC) = [a(TC) - a(0)]/TC, where TC is the temperature in degrees Celsius and a(TC) is the temperature-dependent lattice constant. This actually gives an estimate for α(TC/2) and not for α(TC), and consequently the tabulated values for thermal expansion coefficient are too large.
  9. D. Taylor, “Thermal expansion data. XI. Complex oxides, A2BO5, and the garnets,” Trans. J. Br. Ceram. Soc. 86, 1–6 (1987).
  10. J. D. Foster, L. M. Osterink, “Index of refraction and expansion thermal coefficients of Nd:YAG,” Appl. Opt. 7, 2428–2429 (1968). [CrossRef] [PubMed]
  11. R. K. Kirby, “Thermal expansion,” in Concise Encyclopedia of Solid State Physics, R. G. Lerner, G. L. Trigg, eds. (Addison-Wesley, Reading, Mass., 1983), pp. 275–276.
  12. D. D. Young, K. C. Jungling, T. L. Williamson, E. R. Nichols, “Holographic interferometry measurement of the thermal refractive index coefficient and the thermal expansion coefficient of Nd:YAG and Nd:YALO,” IEEE J. Quantum Electron. QE-8, 720–721 (1972). [CrossRef]
  13. K. E. Wilson, “Thermo-optics of nonlinear crystals and laser materials,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1980).
  14. O. S. Shchavelev, V. A. Babkina, Z. S. Mal’tseva, “Thermo-optic properties, expansion coefficient, and refractive index of yttrium aluminum garnet,” Sov. J. Opt. Technol. 40, 623–624 (1973).
  15. V. V. Blazhko, M. M. Bubnov, E. M. Dianov, A. V. Chikolini, “Determination of the temperature dependence of the linear expansion coefficient and of the temperature coefficient of the refractive index of laser glasses,” Sov. J. Quantum Electron. 6, 624–625 (1976). [CrossRef]
  16. K. L. Ovanesyan, A. G. Petrosyan, G. O. Shirinyan, A. A. Avetisyan, “Optical dispersion and thermal expansion of garnets Lu3Al5O12, Er3Al5O12, and Y3Al5O12,” Inorg. Mater. 17, 308–310 (1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited