OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 15 — May. 20, 1999
  • pp: 3285–3293

Powerful and Tunable Operation of a 1–2-kHz Repetition-Rate Gain-Switched Cr:Forsterite Laser and Its Frequency Doubling

Nickolay Zhavoronkov, Valentin Petrov, and Frank Noack  »View Author Affiliations


Applied Optics, Vol. 38, Issue 15, pp. 3285-3293 (1999)
http://dx.doi.org/10.1364/AO.38.003285


View Full Text Article

Acrobat PDF (147 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a comprehensive study of the optimum operating regime in gain-switched Cr:forsterite lasers pumped at kilohertz repetition rates, comparing five crystals of similar quality but different dopant levels. The optimization of the cavity design includes selection of the proper pump fluence to account for excited-state absorption, optimum matching of the pump and laser modes, and consideration of thermal effects. As a result >1-W average output power is demonstrated at 2 kHz. The maximum conversion efficiencies achieved at 1 kHz are 24.2% (slope) and 20% (absolute). Narrow-band operation of this laser is possible with a birefringent filter, which is a prerequisite for efficient frequency doubling to cover the 585–660-nm part of the visible spectral range. Tunable second-harmonic generation in a temperature-tuned noncritical scheme that employs LiB<sub>3</sub>O<sub>5</sub> produces 60 mW of average power near 619 nm with 13.5% conversion efficiency.

© 1999 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3460) Lasers and laser optics : Lasers
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing

Citation
Nickolay Zhavoronkov, Valentin Petrov, and Frank Noack, "Powerful and Tunable Operation of a 1–2-kHz Repetition-Rate Gain-Switched Cr:Forsterite Laser and Its Frequency Doubling," Appl. Opt. 38, 3285-3293 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-15-3285


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. V. Petricevic, S. K. Gayen, and R. R. Alfano, “Near infrared tunable operation of chromium doped forsterite laser,” Appl. Opt. 28, 1609–1611 (1989).
  2. V. G. Baryshevskii, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Meilman, and B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. 53, 675–676 (1990) [translated from Zh. Prikl. Spektrosk. 53, 7–9 (1990)].
  3. J. M. Evans, V. Petricevic, A. B. Bykov, A. Delgano, and R. R. Alfano, “Direct diode-pumped continuous-wave near-infrared tunable laser operation of Cr4+:forsterite and Cr4+:Ca2GeO4,” Opt. Lett. 22, 1171–1173 (1997).
  4. X. Liu, L. Qian, F. Wise, Z. Zhang, T. Itatani, T. Sugaya, T. Nakagawa, and K. Torizuka, “Femtosecond Cr:forsterite laser diode pumped by a double-clad fiber,” Opt. Lett. 23, 129–131 (1998).
  5. I. T. McKinnie and A. L. Oien, “Tunable red–yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997).
  6. A. Agnesi, S. Dell’Acqua, and P. G. Gobbi, “All-solid-state gain-switched Cr4+:forsterite laser,” Opt. Commun. 127, 273–276 (1996).
  7. A. S. Avtukh, N. I. Zhavoronkov, and V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997) [translated from Kvant. Elektron. (Moscow) 24, 134–136 (1997)]; “Characteristics and kinetics of lasing with gain modulation in a chromium-doped forsterite crystal,” Opt. Spectrosc. 83, 451–456 (1997) [translated from Opt. Spektrosk. 83, 483–488 (1997)].
  8. T. J. Carrig and C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
  9. N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Harting, T. Danger, S. Kück, K. Petermann, and G. Huber, “Excited state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75, 319–325 (1997).
  10. V. Petrov, V. Shcheslavskiy, T. Mirtchev, F. Noack, T. Itatani, T. Segaya, and T. Nakagawa, “High-power self-starting femtosecond Cr-forsterite laser,” Electron. Lett. 34, 559–561 (1998).
  11. M. G. Livshits, Y. I. Mishkel, and A. A. Tarasov, “Quasi-cw lasing in Mg2SiO4:Cr4+ single crystals,” Sov. J. Quantum Electron. 22, 454–455 (1992) [translated from Kvant. Elektron. (Moscow) 19, 496–498 (1992)].
  12. C. R. Pollock, D. B. Barber, J. L. Mass, and S. Markgraf, “Cr4+ lasers: present performance and prospects for new host lattices,” IEEE J. Sel. Top. Quantum Electron. 1, 62–66 (1995).
  13. H. R. Verdun and L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr:forsterite laser,” in Advanced Solid-State Lasers, G. Dube and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 35–39.
  14. N. V. Kuleshov, A. V. Podlipensky, V. G. Shcherbitsky, A. A. Lagatsky, and V. P. Mikhailov, “Excited-state absorption in the range of pumping and laser efficiency of Cr4+:forsterite,” Opt. Lett. 23, 1028–1030 (1998).
  15. S. T. Lai, “Review of spectroscopic and laser properties of emerald,” in High Power and Solid State Lasers, W. W. Simmons, ed., Proc. SPIE 622, 146–150 (1986).
  16. A. Sennaroglu and B. Pekerten, “Determination of the optimum absorption coefficient in Cr4+:forsterite lasers under thermal loading,” Opt. Lett. 23, 361–363 (1998); A. Sennaroglu, “Efficient continuous-wave radiatively cooled Cr4+:forsterite lasers at room temperature,” Appl. Opt. 37, 1062–1067 (1998).
  17. T. Fujii, M. Nagano, and K. Nemoto, “Spectroscopic and laser oscillation characteristics of highly Cr4+-doped forsterite,” IEEE J. Quantum Electron. 32, 1497–1503 (1996).
  18. I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, and T. A. King, “Chromium-doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996).
  19. N. Zhavoronkov, A. Avtukh, and V. Mikhailov, “Chromium-doped forsterite laser with 1.1 W of continuous-wave output power at room temperature,” Appl. Opt. 36, 8601–8605 (1997).
  20. V. Shcheslavskiy, F. Noack, V. Petrov, and N. Zhavoronkov, “Femtosecond regenerative amplification in Cr:forsterite,” Appl. Opt. 38, 3294–3297 (1999).
  21. I. T. Mckinnie, L. A. W. Gloster, A. M. Ouien, and T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
  22. X. Liu, L. Qian, and F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
  23. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
  24. T. Ukachi, R. J. Lane, W. R. Bosenberg, and C. L. Tang, “Measurement of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal,” Appl. Phys. Lett. 57, 980–982 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited