OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 16 — Jun. 1, 1999
  • pp: 3562–3565

Effect of a finite-size pinhole on noise performance in single-, two-, and three-photon confocal fluorescence microscopy

Régis Gauderon and Colin J. R. Sheppard  »View Author Affiliations

Applied Optics, Vol. 38, Issue 16, pp. 3562-3565 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (72 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is known that signal level in single-, two- and three-photon confocal fluorescence microscopy increases with the size of the detector. Here we evaluate the signal-to-noise and the signal-to-background criteria for these microscopes. We investigate the effect of pinhole size on their ability to detect a weakly fluorescent point object in the presence of a uniformly fluorescence background. Numerical results based on a paraxial approximation theory show that optimization of these criteria gives an optimal value for pinhole size, which results in an improved imaging performance. The resulting improvement in noise performance, compared with the use of a large detector, is greater for three-photon than for two-photon confocal fluorescence microscopes.

© 1999 Optical Society of America

OCIS Codes
(110.1220) Imaging systems : Apertures
(110.4280) Imaging systems : Noise in imaging systems
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy

Original Manuscript: September 14, 1998
Revised Manuscript: February 3, 1999
Published: June 1, 1999

Régis Gauderon and Colin J. R. Sheppard, "Effect of a finite-size pinhole on noise performance in single-, two-, and three-photon confocal fluorescence microscopy," Appl. Opt. 38, 3562-3565 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).
  2. T. Wilson, Confocal Microscopy (Academic, London, 1990).
  3. M. Gu, Principles of Three-dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).
  4. J. B. Pawley, ed., Handbook of Biological Confocal Microscopy (Plenum, New York, 1994).
  5. P. C. Cheng, ed., Computer-Assisted Multidimensional Microscopies (Springer, New York, 1993).
  6. A. Kriete, ed., Visualization in Biomedical Microscopies, (Verlagsgesellschaft, Weinheim, Germany, 1992).
  7. C. J. R. Sheppard, R. Kompfner, “Resonant scanning optical microscope,” Appl. Opt. 17, 2879–2882 (1978). [CrossRef] [PubMed]
  8. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  9. S. W. Hell, K. Bahlmann, M. Schrader, M. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996). [CrossRef] [PubMed]
  10. M. Gu, C. J. R. Sheppard, “Confocal fluorescent microscopy with a finite-sized circular detector,” J. Opt. Soc. Am. A 9, 151–153 (1992). [CrossRef]
  11. T. Wilson, A. R. Carlini, “Three-dimensional imaging in confocal imaging system with finite sized detectors,” J. Microsc. 149, 51–66 (1988). [CrossRef]
  12. C. J. R. Sheppard, C. J. Cogswell, M. Gu, “Signal strength and noise in confocal microscopy: factors influencing selection of an optimum detector aperture,” Scanning 13, 233–240 (1991). [CrossRef]
  13. W. W. Webb, K. S. Wells, D. R. Sandison, J. Strickler, Optical Microscopy for Biology (Wiley-Liss, New York, 1990).
  14. D. R. Sandison, W. W. Webb, “Background rejection and signal-to-noise optimization in confocal and alternative fluorescence microscopes,” Appl. Opt. 33, 603–615 (1994). [CrossRef] [PubMed]
  15. D. R. Sandison, D. W. Piston, W. W. Webb, “Background rejection and optimization of signal-to-noise in confocal microscopy,” in Three-Dimensional Confocal Microscopy: Volume Investigation of Biological Specimens, J. K. Stevens, L. R. Mills, J. E. Trogadis, eds. (Academic, San Diego, Calif., 1994), Chap. 2, pp. 29–46. [CrossRef]
  16. D. R. Sandison, D. W. Piston, R. M. Williams, W. W. Webb, “Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes,” Appl. Opt. 34, 3576–3587 (1995). [CrossRef] [PubMed]
  17. M. Gu, C. J. R. Sheppard, “Effects of finite-sized detector on the OTF of confocal fluorescent microscopy,” Optik 89, 65–69 (1991).
  18. M. Gu, C. J. R. Sheppard, “Effects of a finite-sized pinhole on 3-D image formation in confocal two-photon fluorescence microscopy,” J. Mod. Opt. 40, 2009–2024 (1993). [CrossRef]
  19. C. J. R. Sheppard, “Image formation in three-photon fluorescence microscopy,” Bioimaging 4, 124–128 (1996). [CrossRef]
  20. M. Gu, X. S. Gan, “Effect of the detector size and the fluorescence wavelength on the resolution of three- and two-photon confocal microscopy,” Bioimaging 4, 129–137 (1996). [CrossRef]
  21. M. Gu, T. Tannous, C. J. R. Sheppard, “Three-dimensional confocal fluorescence imaging under ultrashort pulse illumination,” Opt. Commun. 117, 406–412 (1995). [CrossRef]
  22. X. S. Gan, C. J. R. Sheppard, “Detectability: a new criterion for evaluation of the confocal microscope,” Scanning 15, 187–192 (1993). [CrossRef]
  23. C.-M. Wang, S. E. Fraser, “The resolution improvement in two-photon laser scanning microscopy,” in Digest of OSA Annual Meeting (Optical Society of America, Washington, D.C., 1997), p. 154.
  24. C. J. R. Sheppard, X. S. Gan, M. Gu, M. Roy, “Noise in confocal microscopes,” in The Handbook of Biological Confocal Microscopy, J. Pawley, ed. (Plenum, New York, 1995), pp. 363–371. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited