OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 16 — Jun. 1, 1999
  • pp: 3614–3620

Measurement of the Electron-Phonon Coupling Factor Dependence on Film Thickness and Grain Size in Au, Cr, and Al

John L. Hostetler, Andrew N. Smith, Daniel M. Czajkowsky, and Pamela M. Norris  »View Author Affiliations


Applied Optics, Vol. 38, Issue 16, pp. 3614-3620 (1999)
http://dx.doi.org/10.1364/AO.38.003614


View Full Text Article

Acrobat PDF (241 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Femtosecond thermoreflectance data for thin films and bulk quantities of Au, Cr, and Al are compared with the parabolic two-step thermal diffusion model for the purpose of determining the electron-phonon coupling factor. The thin films were evaporated and sputtered onto different substrates to produce films that vary structurally. The measurement of the electron-phonon coupling factor is shown to be sensitive to grain size and film thickness. The thin-film thermoreflectance data are compared with that of the corresponding bulk material and to a theoretical model relating the coupling rate to the grain-boundary scattering and size effects on the mean free path of the relevant energy carrier.

© 1999 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(240.0310) Optics at surfaces : Thin films
(260.3910) Physical optics : Metal optics
(350.5340) Other areas of optics : Photothermal effects

Citation
John L. Hostetler, Andrew N. Smith, Daniel M. Czajkowsky, and Pamela M. Norris, "Measurement of the Electron-Phonon Coupling Factor Dependence on Film Thickness and Grain Size in Au, Cr, and Al," Appl. Opt. 38, 3614-3620 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-16-3614


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Das, Lasers and Optical Engineering, 1st ed. (Springer-Verlag, New York, 1991).
  2. K. S. Yngvesson, Microwave Semiconductor Devices, 1st ed. (Kluwer Academic, Norwell, Mass., 1991).
  3. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).
  4. T. Q. Qiu and C. L. Tien, “Femtosecond laser heating of multi-layer metals. I. Analysis,” Int. J. Heat Mass Transfer 37, 2789–2797 (1994).
  5. S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant λ in metallic superconductors,” Phys. Rev. Lett. 64, 2172–2175 (1990).
  6. H. E. Elsayed-Ali, T. Juhasz, G. O. Smith, and W. E. Bron, “Femtosecond thermoreflectivity of polycrystalline and single-crystalline gold films,” Phys. Rev. B 43, 4488–4491 (1991).
  7. T. Q. Qiu and C. L. Tien, “Size effects on nonequilibrium laser heating of metal films,” J. Heat Transfer 115, 842–847 (1993).
  8. C. A. Paddock and G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
  9. J. L. Hostetler, A. N. Smith, and P. M. Norris, “Thin-film thermal conductivity and thickness measurements using picosecond ultrasonics,” Micro. Thermophys. Eng. 1, 237–244 (1997).
  10. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996).
  11. B. R. Cooper and H. Ehrenreich, “Optical properties of noble metals II,” Phys. Rev. 138, A494–A507 (1965).
  12. H. Ehrenreich and H. R. Philip, “Optical properties of Ag and Cu,” Phys. Rev. 28, 1622–1629 (1962).
  13. J. L. Hostetler, D. Stewart, C. E. Daitch, C. S. Ashley, and P. M. Norris, “Optical polarized reflectance characterization of thin aerogel and xerogel films,” J. Non-Cryst. Solids 225, 19–23 (1998).
  14. D. Y. Tzou, Macro- to Microscale Heat Transfer (Taylor & Francis, Bristol, Pa., 1997).
  15. H. R. B. Orlande, M. N. Ozisik, and D. Y. Tzou, “Inverse analysis for estimating the electron-phonon coupling factor in thin metal films,” J. Appl. Phys. 78, 1843–1849 (1995).
  16. S. S. Fouad, A. H. Ammar, and M. H. El-Fazary, “A new approach to the correlation of the electrical properties with interband and intraband transitions of thin Cr films,” Phys. Status Solidi 187, 99–108 (1995).
  17. S. Kumar and G. C. Vradis, “Thermal conductivity of thin metallic films,” J. Heat Transfer 116, 28–34 (1994).
  18. H. Ehrenreich, “The optical properties of metals,” IEEE Spectrum 2, 162–170 (1965).
  19. J. W. C. De Vries, “Temperature and thickness dependence of the resistivity of thin polycrystalline aluminum, cobalt, nickel, palladium, silver and gold films,” Thin Solid Films 167, 25–32 (1988).
  20. T. Q. Qiu and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” J. Heat Transfer 115, 835–841 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited