OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 16 — Jun. 1, 1999
  • pp: 3670–3680

Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance

Rinaldo Cubeddu, Antonio Pifferi, Paola Taroni, Alessandro Torricelli, and Gianluca Valentini  »View Author Affiliations

Applied Optics, Vol. 38, Issue 16, pp. 3670-3680 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed a compact dual-wavelength multichannel tissue oximeter based on the time-correlated single-photon counting (TCSPC) technique. The light sources are two pulsed diode lasers (output wavelengths of 672 and 818 nm, an average power of 1 mW, a pulse duration of 100 ps, and a pulse-repetition rate as high as 80 MHz). The time-resolved reflectance photons are detected by a multianode photomultiplier, and the output signals are redirected by a router to different memory blocks of the TCSPC personal computer board. The system’s accuracy in determining the absorption μ a and the reduced-scattering μ s ′ coefficients and in reconstructing absorber concentrations in diffusive media was tested on phantoms. Preliminary in vivo tissue-oxygenation measurements were performed on healthy volunteers under different physiological conditions with a minimum acquisition time of 100 ms and an injected power of less than 100 µW.

© 1999 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.6500) Spectroscopy : Spectroscopy, time-resolved

Original Manuscript: November 9, 1998
Revised Manuscript: February 26, 1999
Published: June 1, 1999

Rinaldo Cubeddu, Antonio Pifferi, Paola Taroni, Alessandro Torricelli, and Gianluca Valentini, "Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance," Appl. Opt. 38, 3670-3680 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Chance, A. Yodh, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995), and references therein. [CrossRef]
  2. Special issue on Diffusing Photons in Turbid Media, Appl. Opt. 36(1), (1997).
  3. Special issue on Diffusing Photons in Turbid Media, J. Opt. Soc. Am. A 14(1), (1997).
  4. Special issue on Optical Radiation Techniques in Medicine and Biology, Phys. Med. Biol. 42(5), (1997).
  5. G. A. Millikan, “The oximeter, an instrument for measuring continuously the oxygen saturation of arterial blood in man,” Rev. Sci. Instrum. 13, 434–444 (1942). [CrossRef]
  6. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062–2064 (1994). [CrossRef] [PubMed]
  7. M. Kohl, M. Cope, M. Essenpreis, D. Böckner, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett. 19, 2170–2172 (1994). [CrossRef] [PubMed]
  8. G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corbellis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cogn. Neurosci. 7, 446–456 (1995). [CrossRef] [PubMed]
  9. E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. London B 352, 727–735 (1997). [CrossRef]
  10. M. Kohl, U. Lindauer, U. Dirnagl, A. Villringer, “Investigation of cortical spreading depression in rats by near infrared spectroscopy,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1988), pp. 21–22.
  11. For classical studies, see, for example, F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977); B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhaemoglobin in brain,” Proc. Natl. Acad. Sci. 85, 4971–4975 (1989). For recent studies, see, for example, D. A. Benaron, B. Chance, M. Ferrari eds., Photon propagation in Tissue III, Proc. SPIE3194 (1998); J. G. Fujimoto, M. S. Patterson, eds., Advances in Optical Imaging and Photon Migration, Vol. 21 of OSA Trends in Optics and Photonics Series and M. S. Patterson, eds., Advances in Optical Imaging and Photon Migration, (Optical Society of America, Washington D.C., 1998).
  12. S. J. Matcher, C. E. Cooper, “Absolute quantification of deoxyhaemoglobin concentration in tissue near infrared spectroscopy,” Phys. Med. Biol. 39, 1295–1312 (1995). [CrossRef]
  13. S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy,” Phys. Med. Biol. 38, 177–196 (1993).
  14. M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993). [CrossRef]
  15. M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Spectral dependence of temporal point-spread functions in human tissue,” Appl. Opt. 32, 418–425 (1993). [CrossRef] [PubMed]
  16. M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Olbrig, A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998). [CrossRef] [PubMed]
  17. S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical path lengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992). [CrossRef] [PubMed]
  18. D. S. Smith, W. J. Levy, S. Carter, N. Wang, M. Haida, B. Chance, “Time-resolved spectroscopy and the determination of photon scattering, path length and brain vascular hemoglobin saturation in a population of normal volunteers,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 511–516 (1993). [CrossRef]
  19. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, D. T. Delpy, “Optical path length measurements on the adult head, calf and forearm and the head of the newborn infant using phase-resolved spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995). [CrossRef] [PubMed]
  20. M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992). [CrossRef] [PubMed]
  21. D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993). [CrossRef] [PubMed]
  22. M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “A simple and novel algorithm for time-resolved multiwavelength oximetry,” Phys. Med. Biol. 41, 551–562 (1996). [CrossRef] [PubMed]
  23. M. Miwa, Y. Ueda, B. Chance, “Development of a time-resolved spectroscopy system for quantitative noninvasive tissue measurements,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149 (1995). [CrossRef]
  24. H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer–Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998). [CrossRef]
  25. T. Kitai, B. Beauvoit, B. Chance, “Optical determination of fatty change of the graft liver with near-infrared time-resolved spectroscopy,” Transplantation 62, 642–647 (1996). [CrossRef] [PubMed]
  26. T. Hamaoka, H. Iwane, T. Katsumura, T. Shimomitsu, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, M. Miwa, B. Chance, “The quantitative measures of muscle oxygenation by near infrared time-resolved spectroscopy,” Med. Sci. Sports Exercise 28, S62 (1996). [CrossRef]
  27. R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994). [CrossRef]
  28. S. A. Prahl, “Optical absorption of hemoglobin,” Biomed. Opt. NewsEtcJune (1998), http://ece.ogi.edu/omlc/news .
  29. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995). [CrossRef] [PubMed]
  30. W. G. Zijlstra, A. Buursma, W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991). [PubMed]
  31. A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995). [CrossRef] [PubMed]
  32. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1992).
  33. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996). [CrossRef] [PubMed]
  34. S. Jacques, “Optical properties of Intralipid, an aqueous suspension of lipid droplets,” Biomed. Opt. NewsEtc April (1998), http://ece.ogi.edu/omlc/news .
  35. B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited