OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 17 — Jun. 10, 1999
  • pp: 3714–3719

Narrow-band resonant grating waveguide filters constructed with azobenzene polymers

Raymond J. Stockermans and Paul L. Rochon  »View Author Affiliations

Applied Optics, Vol. 38, Issue 17, pp. 3714-3719 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (2283 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Resonant grating waveguide structures were used to fabricate narrow-bandwidth optical filters. Azopolymer films were deposited on top of slab waveguides, and surface relief gratings were optically inscribed on them to be used as couplers. This technique is a simple one-step process and produces efficient gratings with high accuracy. Sharp resonant peaks are observed in the transmission and the reflection spectra of these structures. The thickness and the index of refraction of the waveguide can be accurately determined from these resonances by use of modal theory. These parameters are then used in the design of an optical filter. Bandwidths of less than 1 nm and a decrease in transmitted signal of 60% are reported. Measurement of these values was limited by the divergence of the probe beam.

© 1999 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.2790) Integrated optics : Guided waves
(230.3120) Optical devices : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar

Original Manuscript: September 21, 1998
Revised Manuscript: January 4, 1999
Published: June 10, 1999

Raymond J. Stockermans and Paul L. Rochon, "Narrow-band resonant grating waveguide filters constructed with azobenzene polymers," Appl. Opt. 38, 3714-3719 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Hunsperger, Integrated Optics: Theory and Technology, 4th ed. (Springer-Verlag, Berlin, 1995). [CrossRef]
  2. A. Hessel, A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965). [CrossRef]
  3. S. S. Wang, R. Magnusson, J. S. Bagby, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990). [CrossRef]
  4. R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992). [CrossRef]
  5. A. Sharon, D. Rosenblatt, A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996). [CrossRef]
  6. P. Rochon, A. Natansohn, C. L. Callender, L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71, 1008–1010 (1997). [CrossRef]
  7. S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993). [CrossRef] [PubMed]
  8. A. Sharon, D. Rosenblatt, A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997). [CrossRef]
  9. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  10. M. Nevière, “Bragg–Fresnel multilayer gratings: electromagnetic theory,” J. Opt. Soc. Am. A 11, 1835–1845 (1994). [CrossRef]
  11. H. L. Garvin, E. Garmire, S. Somekh, H. Stoll, A. Yariv, “Ion beam micromachining of integrated optics components,” Appl. Opt. 12, 455–459 (1973). [CrossRef] [PubMed]
  12. L. F. Johnson, G. W. Kammlott, K. A. Ingersoll, “Generation of periodic surface corrugations,” Appl. Opt. 17, 1165–1181 (1978). [CrossRef] [PubMed]
  13. K. Yokomori, “Dielectric surface-relief gratings with high diffraction efficiency,” Appl. Opt. 23, 2303–2310 (1984). [CrossRef] [PubMed]
  14. P. Rochon, J. Mao, A. Natansohn, E. Batalla, “Optically induced high efficiency gratings in azo polymer films,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 35, 154–155 (1994).
  15. P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995). [CrossRef]
  16. D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser induced holographic surface relief gratings on non-linear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995). [CrossRef]
  17. P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigation of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996). [CrossRef]
  18. M. Ho, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage. 9. Copolymers containing two types of azobenzene side groups,” Macromolecules 29, 44–49 (1996). [CrossRef]
  19. A. Natansohn, P. Rochon, J. Gosselin, S. Xie, “Azo polymers for reversible optical storage. 1. Poly[4′-[[2-(acrylogloxy)ethyl]ethylamino]-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992). [CrossRef]
  20. A. Natansohn, P. Rochon, M. Ho, C. Barrett, “Azo polymers for reversible optical storage. 6. Poly[4-[2-(methacryloyloxy)ethyl]azobenzene],” Macromolecules 28, 4179–4183 (1995). [CrossRef]
  21. X. Meng, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage. 13. Photoorientation of rigid side-groups containing 2 azo bonds,” Polymer 38, 2677–2682 (1997). [CrossRef]
  22. X. Mai, R. Moshrefzadeh, U. J. Gibson, G. I. Stegeman, C. T. Seaton, “Simple versatile method for fabricating guided-wave gratings,” Appl. Opt. 24, 3155–3161 (1985). [CrossRef] [PubMed]
  23. A. Natansohn, P. Rochon, X. Meng, C. Barrett, T. Buffeteau, S. Bonenfant, M. Pezolet, “Molecular addressing—selective photoinduced cooperative motion of polar ester groups in copolymers containing azobenzene groups,” Macromolecules 31, 1155–1161 (1998). [CrossRef]
  24. J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, S. Tripathy, “Gradient force—the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998). [CrossRef]
  25. P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992). [CrossRef]
  26. P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Kinetics for reversible optical storage in azopolymers,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. SPIE1774, 181–187 (1992). [CrossRef]
  27. C. J. Barrett, A. Natansohn, P. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100, 8836–8842 (1996). [CrossRef]
  28. T. G. Pederson, P. M. Johansen, N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Theoretical model of photoinduced anisotropy in liquid crystalline azobenzene side-chain polyester,” J. Opt. Soc. Am. B 15, 1120–1129 (1998). [CrossRef]
  29. P. Lefin, C. Fiorini, J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9, 323–328 (1998). [CrossRef]
  30. P. Rochon, J. Paterson, A. Natansohn, “Efficiency of optically induced surface gratings on azo polymer films,” in Applied Optics and Optoelectronics 1996, Proceedings of the Applied Optics Divisional Conference of the Institute of Physics, K. T. V. Grattan, ed. (Institute of Physics, Brisol, UK, 1996), pp. 116–119.
  31. J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, L. Robitaille, “Optically inscribed surface relief gratings on azobenzene-containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69, 3318–3320 (1996). [CrossRef]
  32. GSOLVER was developed in 1984 by the Grating Solver Development Company, P.O. Box 353, Allen, Texas 75013. Website at http://www.gsolver.com .
  33. D. Marcuse, “Geometrical optics treatment of slab waveguides,” in Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, San Diego, Calif., 1991), pp. 3–7.
  34. C. R. Pollock, Fundamentals of Optoelectronics (R. D. Irwin, Chicago, Ill., 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited