OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 17 — Jun. 10, 1999
  • pp: 3787–3797

Vector diffraction from subwavelength optical disk structures: two-dimensional modeling of near-field profiles, far-field intensities, and detector signals from a dvd

Wei-Chih Liu and Marek W. Kowarz  »View Author Affiliations

Applied Optics, Vol. 38, Issue 17, pp. 3787-3797 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (2549 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Rigorous two-dimensional vector-diffraction patterns of a focused beam incident on an optical disk, specifically, a digital versatile disk (DVD), are examined both in the near field and in the far field. An efficient finite-difference frequency-domain method is developed for calculating the electromagnetic fields in the neighborhood of subwavelength dielectric and metallic structures. The results of vector-diffraction theory are compared with those of scalar-diffraction theory for pressed DVD features that consist of pits or of bumps. The sum (data) and difference (tracking) signals from a split photodetector are also calculated for different disk features and for different polarizations. The subwavelength features of a DVD result in considerable vector-diffraction effects both in the near-field profiles and in the detector signals, depending not only on the polarization of illumination but also on whether the features are pits or bumps. This paper provides important insight into the vector-diffraction effects encountered in high-density optical data storage systems.

© 1999 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(210.0210) Optical data storage : Optical data storage
(210.4590) Optical data storage : Optical disks

Original Manuscript: January 19, 1999
Published: June 10, 1999

Wei-Chih Liu and Marek W. Kowarz, "Vector diffraction from subwavelength optical disk structures: two-dimensional modeling of near-field profiles, far-field intensities, and detector signals from a dvd," Appl. Opt. 38, 3787-3797 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Courjon, C. Bainier, “Near field microscopy and near field optics,” Rep. Prog. Phys. 57, 989–1028 (1994). [CrossRef]
  2. C. Girard, A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996). [CrossRef]
  3. M. A. Paesler, P. J. Moyer, Near-Field Optics: Theory, Instrumentation, and Applications (Wiley, New York, 1996).
  4. J. P. Fillard, Near Field Optics and Nanoscopy (World Scientific, Singapore, 1996). [CrossRef]
  5. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992). [CrossRef]
  6. J. Bae, T. Okamoto, T. Fujii, K. Mizuno, T. Nozokido, “Experimental demonstration for scanning near-field optical microscopy using a metal micro-slit probe at millimeter wavelengths,” Appl. Phys. Lett. 71, 3581–3583 (1997). [CrossRef]
  7. O. W. Shih, “Near-field diffraction by a slit in a thick perfectly conducting screen flying above a magneto-optical disk,” J. Appl. Phys. 84, 6485–6498 (1998). [CrossRef]
  8. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994). [CrossRef]
  9. B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996). [CrossRef]
  10. G. S. Kino, “Near-field optical storage,” Opt. Photon. News 8(11), 38–39 (1997). [CrossRef]
  11. M. Mansuripur, G. Sincerbox, “Principles and techniques of optical data storage,” Proc. IEEE 85, 1780–1796 (1997). [CrossRef]
  12. M. W. Kowarz, “Diffraction effects in the near field,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1995).
  13. A. Madrazo, M. Nieto-Vesperinas, “Model near field calculations for optical data storage readout,” Appl. Phys. Lett. 70, 31–33 (1997). [CrossRef]
  14. J. B. Judkins, R. W. Ziolkowski, “Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film grating,” J. Opt. Soc. Am. A 12, 1974–1983 (1995). [CrossRef]
  15. J. B. Judkins, C. W. Haggans, R. W. Ziolkowski, “Two-dimensional finite-difference time-domain simulation for rewritable optical disk surface structure design,” Appl. Opt. 35, 2477–2487 (1996). [CrossRef] [PubMed]
  16. H. Ooki, “Vector diffraction theory for magnetooptical disc systems,” Optik 89, 15–22 (1991).
  17. Y.-L. Kok, “Boundary-value solution to electromagnetic scattering by a rectangular groove in a ground plane,” J. Opt. Soc. Am. A 9, 302–311 (1992). [CrossRef]
  18. K. Kobayashi, “Vector diffraction modeling: polarization dependence of optical read-out/servo signals,” Jpn. J. Appl. Phys. 32, 3175–3184 (1993). [CrossRef]
  19. T. Park, H. Eom, K. Yoshitomi, “Analysis of TM scattering from finite rectangular grooves in a conducting plane,” J. Opt. Soc. Am. A 10, 905–911 (1993). [CrossRef]
  20. O. Mata-Mendez, J. Sumaya-Martinez, “Scattering of TE-polarized waves by a finite grating: giant resonant enhancement of the electric field within the grooves,” J. Opt. Soc. Am. A 14, 2203–2211 (1997). [CrossRef]
  21. T. Kojima, J. Ido, “Boundary-element method analysis of light-beam scattering and the sum and differential signal output by DRAW-type optical disk models,” Electron. Commun. Jpn. Part 2 Electron. 74, 11–19 (1991). [CrossRef]
  22. Y. Miyazaki, K. Manabe, “Scattered near-field and induced current of a beam wave by pits on optical disks using boundary element analysis,” Radio Sci. 26, 281–289 (1991). [CrossRef]
  23. M. Ogawa, M. Nakada, R. Katayama, M. Okada, M. Itoh, “Analysis of scattering light from magnetic material with land/groove by three-dimensional boundary element method,” Jpn. J. Appl. Phys. 35, 336–341 (1996). [CrossRef]
  24. K. Hirayama, E. Glytsis, T. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14, 907–917 (1997). [CrossRef]
  25. J. G. Dil, B. A. J. Jacobs, “Apparent size of reflecting polygonal obstacles of the order one wavelength,” J. Opt. Soc. Am. 69, 950–960 (1979). [CrossRef]
  26. D. S. Marx, D. Psaltis, “Optical diffraction of focused spots and subwavelength structures,” J. Opt. Soc. Am. A 14, 1268–1278 (1997). [CrossRef]
  27. D. S. Marx, D. Psaltis, “Polarization quadrature measurement of subwavelength diffracting structures,” Appl. Opt. 36, 6434–6440 (1997). [CrossRef]
  28. R. Depine, D. Skigin, “Scattering from metallic surfaces having a finite number of rectangular grooves,” J. Opt. Soc. Am. A 11, 2844–2850 (1994). [CrossRef]
  29. W.-C. Liu, M. W. Kowarz, “Vector diffraction from subwavelength optical disk structures: two-dimensional near-field profiles,” Opt. Express 2, 191–197 (1998). [CrossRef] [PubMed]
  30. R. E. Gerber, M. Mansuripur, “Dependence of the tracking performance of an optical disk on the direction of the incident-light polarization,” Appl. Opt. 34, 8192–8200 (1995). [CrossRef] [PubMed]
  31. K. D. Paulsen, “Finite-element solution of Maxwell’s equations with Helmholtz forms,” J. Opt. Soc. Am. A 11, 1434–1444 (1994). [CrossRef]
  32. B.-N. Jiang, J. Wu, L. A. Povinelli, “The origin of spurious solutions in computational electromagnetics,” J. Comput. Phys. 125, 104–123 (1996). [CrossRef]
  33. P. Concus, G. H. Golub, “Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 10, 1103–1120 (1973). [CrossRef]
  34. B. L. Buzbee, G. H. Golub, C. W. Nielson, “On direct methods for solving Poisson’s equations,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 7, 627–656 (1970). [CrossRef]
  35. P. N. Swarztrauber, “The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle,” SIAM (Soc. Ind. Appl. Math.) Rev. 19, 490–501 (1977).
  36. R. A. Sweet, “A cyclic reduction algorithm for solving block tridiagonal systems of arbitrary dimension,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 14, 706–720 (1977). [CrossRef]
  37. P. N. Swarztrauber, R. A. Sweet, “Vector and parallel methods for the direct solution of Poisson’s equation,” J. Comput. Appl. Math. 27, 241–263 (1989). [CrossRef]
  38. E. Gallopoulos, Y. Saad, “A parallel block cyclic reduction algorithm for the fast solution of elliptic equations,” Parallel Comput. 10, 143–159 (1989). [CrossRef]
  39. Y. Saad, M. H. Schultz, “GMRES: a general minimal residual algorithm for solving nonsymmetric linear systems,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 7, 856–869 (1986). [CrossRef]
  40. C. D. Dimitropoulos, A. N. Beris, “An efficient and robust spectral solver for nonseparable elliptic equations,” J. Comput. Phys. 133, 186–191 (1997). [CrossRef]
  41. B. Engquist, A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comput. 31, 629–651 (1977). [CrossRef]
  42. B. Engquist, A. Majda, “Radiation boundary conditions for acoustic and elastic wave calculations,” Commun. Pure Appl. Math. 32, 313–357 (1979). [CrossRef]
  43. G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981). [CrossRef]
  44. R. L. Higdon, “Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation,” Math. Comput. 47, 437–459 (1986).
  45. R. L. Higdon, “Numerical absorbing boundary conditions for the wave equation,” Math. Comput. 49, 65–90 (1987). [CrossRef]
  46. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  47. J. J. Grefet, A. Sentenac, R. Carminati, “Surface profile reconstruction using near-field data,” Opt. Commun. 116, 20–24 (1995). [CrossRef]
  48. A. Madrazo, M. Nieto-Vesperinas, “Surface structure and polariton interactions in the scattering of electromagnetic wave from a cylinder in front of a conducting grating: theory for the reflection photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 785–795 (1996). [CrossRef]
  49. G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, K. S. Immink, Principles of Optical Disc Systems (Hilger, Bristol, UK, 1985).
  50. A. B. Marchant, Optical Recording: A Technical Overview (Addison-Wesley, Reading, Mass., 1990).
  51. M. Mansuripur, The Physical Principles of Magneto-Optical Recording (Cambridge U. Press, New York, 1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited