OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 17 — Jun. 10, 1999
  • pp: 3798–3803

Deformed-Helix Ferroelectric Liquid-Crystal Spatial Light Modulator that Demonstrates High Diffraction Efficiency and 370-Line Pairs/mm Resolution

David V. Wick, Ty Martinez, Michael V. Wood, James M. Wilkes, Mark T. Gruneisen, Vladimir A. Berenberg, Michael V. Vasil’ev, Arkady P. Onokhov, and Leonid A. Beresnev  »View Author Affiliations


Applied Optics, Vol. 38, Issue 17, pp. 3798-3803 (1999)
http://dx.doi.org/10.1364/AO.38.003798


View Full Text Article

Acrobat PDF (111 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

New liquid-crystal media and photoconductor materials are being utilized in spatial light modulators to increase their resolution, diffraction efficiency, speed, and sensitivity. A prototypical device developed for real-time holography applications has shown an 8% diffraction efficiency from a holographic grating with a spatial frequency of 370 line pairs/mm (lp/mm). At 18 lp/mm the device has demonstrated a 31% diffraction efficiency with a 600-μs hologram write time using 400-nJ/cm2 write beams.

© 1999 Optical Society of America

OCIS Codes
(090.1000) Holography : Aberration compensation
(160.2260) Materials : Ferroelectrics
(160.3710) Materials : Liquid crystals
(230.6120) Optical devices : Spatial light modulators

Citation
David V. Wick, Ty Martinez, Michael V. Wood, James M. Wilkes, Mark T. Gruneisen, Vladimir A. Berenberg, Michael V. Vasil’ev, Arkady P. Onokhov, and Leonid A. Beresnev, "Deformed-Helix Ferroelectric Liquid-Crystal Spatial Light Modulator that Demonstrates High Diffraction Efficiency and 370-Line Pairs/mm Resolution," Appl. Opt. 38, 3798-3803 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-17-3798


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. N. L. Ivanova, A. P. Onokhov, A. N. Chaika, V. V. Resnichenko, D. N. Yeskov, A. L. Gromadin, N. A. Feoktistov, and L. A. Beresnev, “Liquid crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE 2754, 180–185 (1996).
  2. M. T. Gruneisen, K. W. Peters, and J. M. Wilkes, “Compensated imaging by real-time holography with optically addressed liquid-crystal spatial light modulators,” in Liquid Crystals, I. Khoo, ed., Proc. SPIE 3143, 171–181 (1997).
  3. M. V. Vasil’ev, V. A. Berenberg, A. A. Leshchev, P. M. Semenov, and V. Yu. Venediktov, “Large numerical aperture imaging bypass system with dynamic holographic correction for primary mirror distortions,” in Adaptive Optical System Technologies, D. Bonaccini and R. K. Tyson, eds., Proc. SPIE 3353, 889–895 (1998).
  4. An in-depth description of the LC molecular behavior can be found in Spatial Light Modulator Technology: Materials, Devices, and Applications, U. Efron, ed. (Marcel Dekker, New York, 1995).
  5. J. W. Goodman, D. W. Jackson, M. Lehmann, and J. Knotts, “Experiments in long-distance holographic imagery,” Appl. Opt. 8, 1581–1586 (1969).
  6. S. Fukushima and T. Kurokawa, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett. 58, 787–789 (1991).
  7. B. Landreth, C. C. Mao, and G. Moddel, “Operating characteristics of optically addressed spatial light modulators incorporating distorted helix ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 30, 1400–1404 (1991).
  8. G. B. Cohen, R. Pogreb, K. Vinokur, and D. Davidov, “Spatial light modulator based on a deformed-helix ferroelectric liquid crystal and a thin a-Si:H amorphous photoconductor,” Appl. Opt. 36, 455–459 (1997).
  9. A. P. Onokhov, V. A. Berenberg, A. N. Chaika, N. L. Ivanova, M. V. Isaev, N. A. Feoktistov, L. A. Beresnev, and W. Haase, “Novel liquid-crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VIII, D. R. Pape, ed., Proc. SPIE 3388, 139–148 (1998).
  10. Hamamatsu technical data sheets for the Model X5641 PAL-SLM parallel-aligned nematic LC spatial light modulator and the Model X4601 FLC-SLM ferroelectric LC spatial light modulator (Hamamatsu Corporation, 360 Foothill Road, Bridgewater, N.J. 08807, 1997).
  11. C. C. Mao, K. M. Johnson, and G. Moddel, “Optical phase conjugation using optically addressed chiral smectic liquid crystal spatial light modulators,” Ferroelectrics 114, 45–53 (1991).
  12. L. A. Beresnev, L. M. Blinov, and D. I. Dergachev, “Electro-optical response of a thin layer of a ferroelectric liquid crystal with a small pitch and high spontaneous polarization,” Ferroelectrics 85, 173–186 (1988).
  13. K. Akiyama, A. Takimoto, and H. Ogawa, “Photoaddressed spatial light modulator using transmissive and highly photosensitive amorphous-silicon carbide film,” Appl. Opt. 32, 6493–6500 (1993).
  14. Y. Hamakawa, ed., Amorphous Semiconductor Technologies and Devices (Ohmsha, Ltd., Tokyo, 1981).
  15. L. A. Beresnev, W. Dultz, A. Onokhov, and W. Haase, “Local optical limiting devices based on photoaddressed spatial light modulators, using ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 304, 285–293 (1997).
  16. I. Abdulhalim and G. Moddel, “Electrically and optically controlled light modulation and color switching using helix distortion of ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 200, 79–101 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited