OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 18 — Jun. 20, 1999
  • pp: 3831–3843

Hyperspectral Remote Sensing for Shallow Waters. 2. Deriving Bottom Depths and Water Properties by Optimization

Zhongping Lee, Kendall L. Carder, Curtis D. Mobley, Robert G. Steward, and Jennifer S. Patch  »View Author Affiliations


Applied Optics, Vol. 38, Issue 18, pp. 3831-3843 (1999)
http://dx.doi.org/10.1364/AO.38.003831


View Full Text Article

Acrobat PDF (193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In earlier studies of passive remote sensing of shallow-water bathymetry, bottom depths were usually derived by empirical regression. This approach provides rapid data processing, but it requires knowledge of a few true depths for the regression parameters to be determined, and it cannot reveal in-water constituents. In this study a newly developed hyperspectral, remote-sensing reflectance model for shallow water is applied to data from computer simulations and field measurements. In the process, a remote-sensing reflectance spectrum is modeled by a set of values of absorption, backscattering, bottom albedo, and bottom depth; then it is compared with the spectrum from measurements. The difference between the two spectral curves is minimized by adjusting the model values in a predictor–corrector scheme. No information in addition to the measured reflectance is required. When the difference reaches a minimum, or the set of variables is optimized, absorption coefficients and bottom depths along with other properties are derived simultaneously. For computer-simulated data at a wind speed of 5 m/s the retrieval error was 5.3% for depths ranging from 2.0 to 20.0 m and 7.0% for total absorption coefficients at 440 nm ranging from 0.04 to 0.24 m<sup>−1</sup>. At a wind speed of 10 m/s the errors were 5.1% for depth and 6.3% for total absorption at 440 nm. For field data with depths ranging from 0.8 to 25.0 m the difference was 10.9% (<i>R</i><sup>2</sup> = 0.96, <i>N</i> = 37) between inversion-derived and field-measured depth values and just 8.1% (<i>N</i> = 33) for depths greater than 2.0 m. These results suggest that the model and the method used in this study, which do not require <i>in situ</i> calibration measurements, perform very well in retrieving in-water optical properties and bottom depths from above-surface hyperspectral measurements.

© 1999 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

Citation
Zhongping Lee, Kendall L. Carder, Curtis D. Mobley, Robert G. Steward, and Jennifer S. Patch, "Hyperspectral Remote Sensing for Shallow Waters. 2. Deriving Bottom Depths and Water Properties by Optimization," Appl. Opt. 38, 3831-3843 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-18-3831


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. C. Polcyn, W. L. Brown, and I. J. Sattinger, “The measurement of water depth by remote-sensing techniques,” Rep. 8973–26-F (Willow Run Laboratories, University of Michigan, Ann Arbor, Mich., 1970).
  2. D. R. Lyzenga, “Passive remote-sensing techniques for mapping water depth and bottom features,” Appl. Opt. 17, 379–383 (1978).
  3. D. R. Lyzenga, “Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data,” Int. J. Remote Sensing 2, 71–82 (1981).
  4. J. M. Paredes and R. E. Spero, “Water depth mapping from passive remote-sensing data under a generalized ratio assumption,” Appl. Opt. 22, 1134–1135 (1983).
  5. R. K. Clark, T. H. Fay, and C. L. Walker, “Bathymetry calculations with Landsat 4 TM imagery under a generalized ratio assumption,” Appl. Opt. 26, 4036–4038 (1987).
  6. D. Spitzer and R. W. J. Dirks, “Bottom influence on the reflectance of the sea,” Int. J. Remote Sensing 8, 279–290 (1987).
  7. N. T. O’Neill and J. R. Miller, “On calibration of passive optical bathymetry through depth soundings analysis and treatment of errors resulting from the spatial variation of environmental parameters,” Int. J. Remote Sensing 10, 1481–1501 (1989).
  8. W. D. Philpot, “Bathymetric mapping with passive multispectral imagery,” Appl. Opt. 28, 1569–1578 (1989).
  9. D. R. Lyzenga, “Shallow-water bathymetry using combined lidar and passive multispectral scanner data,” Int. J. Remote Sensing 6, 115–125 (1985).
  10. W. D. Philpot, “Radiative transfer in stratified waters: a single-scattering approximation for irradiance,” Appl. Opt. 26, 4123–4132 (1987).
  11. Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “A model for interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33, 5721–5732 (1994).
  12. S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanogr. 39, 1689–1703 (1994).
  13. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 1. A semianalytical model,” Appl. Opt. 37, 6329–6338 (1998).
  14. K. L. Carder, F. R. Chen, Z. P. Lee, and S. Hawes, “Semianalytic modis algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403–5421 (1999).
  15. R. W. Preisendorfer, Hydrologic Optics Vol. 1: Introduction, NTIS PB-259 793/8ST (National Technical Information Service, Springfield, Va., 1976).
  16. B. R. Marshall and R. C. Smith, “Raman scattering and in-water ocean properties,” Appl. Opt. 29, 71–84 (1990).
  17. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters (Part 2): Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
  18. C. D. Mobley, Hydrolight 3.0 Users’ Guide, Final Report, SRI (SRI International, Menlo Park, Calif. 94025, 1995), Project 5632.
  19. H. R. Gordon, R. C. Smith, and J. R. V. Zaneveld, “Introduction to ocean optics,” in Ocean Optics VI, S. Q. Duntley, ed., Proc. SPIE 208, 1–43 (1979).
  20. K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, and B. G. Mitchell, “Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products,” J. Geophys. Res. 96, 20,599–20,611 (1991).
  21. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
  22. W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35, 1657–1675 (1990).
  23. Z. P. Lee, K. L. Carder, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Method to derive ocean absorption coefficients from remote-sensing reflectance,” Appl. Opt. 35, 453–462 (1996).
  24. K. L. Carder and R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30, 286–298 (1985).
  25. R. W. Austin, “Inherent spectral radiance signatures of the ocean surface,” in Ocean Color Analysis (Final Technical Report), S. Q. Duntley, ed., SIO Ref. 74–10 (Scripps Institution of Oceanography, La Jolla, Calif., 1974), pp. 2.1–2.20.
  26. R. Pope and E. Fry, “Absorption spectrum (380–700 nm) of pure waters: II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
  27. Z. P. Lee, “Visible-infrared remote-sensing model and applications for ocean waters,” Ph.D. dissertation (University of South Florida, Department of Marine Science, St. Petersburg, Fla., 1994).
  28. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
  29. C. S. Roesler and M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100, 13,279–13,294 (1995).
  30. K. L. Carder, R. F. Steward, R. R. Harey, and P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
  31. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, New York, 1974), pp. 1–24.
  32. Z. P. Lee, K. L. Carder, J. Marra, R. G. Steward, and M. J. Perry, “Estimating primary production at depth from remote sensing,” Appl. Opt. 35, 463–474 (1996).
  33. Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” in Ocean Optics XIII, S. J. Ackleson, ed., Proc. SPIE 2963, 160–166 (1996).
  34. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, New York, 1994).
  35. J. L. Mueller and R. W. Austin, “Ocean optics protocols for SeaWiFS validation,” NASA Tech. Memo. 104566, Vol. 5, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).
  36. B. G. Mitchell and D. A. Kiefer, “Chl-a specific absorption and fluorescence excitation spectra for light limited phytoplankton,” Deep-Sea Res. 35, 635–663 (1988).
  37. M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in a thermally stratified sea,” Bull. Mar. Sci. 37, 634–642 (1985).
  38. C. S. Roesler, M. J. Perry, and K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
  39. A. Bricaud and D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990).
  40. S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
  41. J. J. Walsh, K. L. Carder, and F. E. Mueller-Karger, “Meridional fluxes of dissolved organic matter in the North Atlantic Ocean,” J. Geophys. Res. 97, 15,625–15,637 (1992).
  42. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationship between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
  43. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983), p. 44.
  44. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited