OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 18 — Jun. 20, 1999
  • pp: 3945–3950

Design of an efficient broadband far-infrared fourier-transform spectrometer

Bruno Carli, Alessandra Barbis, John E. Harries, and Luca Palchetti  »View Author Affiliations

Applied Optics, Vol. 38, Issue 18, pp. 3945-3950 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (394 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As part of a feasibility study for a far-infrared Fourier-transform spaceborne spectrometer, the criteria that drive the choice of the instrument configuration have been identified as broadband operation, dual input and output ports, optics of the interferometer with full tilt compensation, and measurement of both planes of polarization of the source on a single detector. Despite the fact that some of these requirements are apparently difficult to reconcile, a new configuration of the polarizing interferometer that meets all the above requirements has been identified. The considerations that led to the design of this new configuration are discussed.

© 1999 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(220.0220) Optical design and fabrication : Optical design and fabrication
(300.0300) Spectroscopy : Spectroscopy
(300.6190) Spectroscopy : Spectrometers
(300.6270) Spectroscopy : Spectroscopy, far infrared
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

Original Manuscript: August 4, 1998
Revised Manuscript: April 5, 1999
Published: June 20, 1999

Bruno Carli, Alessandra Barbis, John E. Harries, and Luca Palchetti, "Design of an efficient broadband far-infrared fourier-transform spectrometer," Appl. Opt. 38, 3945-3950 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. H. Martin, E. Puplett, “Polarised interferometric spectrometry for the millimetre and submillimetre spectrum,” Infrared Phys. 10, 105–109 (1969). [CrossRef]
  2. J. P. Auton, “Infrared transmission polarizers by photolithography,” Appl. Opt. 6, 1023–1027 (1967). [CrossRef] [PubMed]
  3. P. A. R. Ade, Department of Physics, Queen Mary & Westfield College , Mile End Road, London E1 4NS, UK (personal communication, 1997).
  4. I. R. Abel, B. R. Reynolds, J. B. Breckinridge, J. Pritchard, “Optical design of the ATMOS Fourier transform spectrometer,” in Optical System Engineering, P. R. Yoder, ed., Proc. SPIE193, 12–26 (1979). [CrossRef]
  5. H. Shimoda, T. Ogawa, “Interferometric monitor for greenhouse gases (IMG),” in Infrared Spaceborne Remote Sensing II, M. S. Scholl ed., Proc. SPIE2268, 92–102 (1994). [CrossRef]
  6. P. Javelle, F. Cayla, “Infrared atmospheric sounding interferometer—instrument overview,” in Space Optics 1994: Earth Observation and Astronomy, G. Cerrutti-Maori, P. Roussel, eds., Proc. SPIE2209, 14–23 (1994).
  7. M. Endemann, G. Lange, B. Fladt, “MIPAS for Envisat-1,” in Space Optics 1994: Earth Observation and Astronomy, G. Cerrutti-Maori, P. Roussel, eds., Proc. SPIE2209, 36–47 (1994).
  8. H. Fischer, H. Oelhaf, “Remote sensing of the vertical profiles of atmospheric trace constituents with MIPAS limb-emission spectrometers,” Appl. Opt. 35, 2787–2796 (1996). [CrossRef] [PubMed]
  9. R. Beer, T. A. Glavich, “Remote sensing of the troposphere by infrared emission spectroscopy,” in Advanced Optical Instrumentation for Remote Sensing of the Earth’s Surface from Space, G. Duchossois, F. L. Herr, R. Zander, eds., Proc. SPIE1129, 42–51 (1989). [CrossRef]
  10. J. C. Mather, D. J. Fixsen, R. A. Shafer, “Design for the COBE far infrared absolute spectrophotometer (FIRAS),” in Infrared Spaceborne Remote Sensing, M. S. Scholl, ed., Proc. SPIE2019, 168–179 (1993). [CrossRef]
  11. D. H. Martin, “Polarizing (Martin–Puplett) interferometric spectrometer for the near-and submillimeter spectra,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1982), Vol. 6, Chap. 2, pp. 65–148.
  12. B. Carli, “High-resolution far-infrared FT spectroscopy of the stratosphere: optimization of the optical design of the instrument,” in 7th International Conference on Fourier Transform Spectroscopy, D. G. Cameron, ed., Proc. SPIE1145, 93–98 (1989). [CrossRef]
  13. A. E. Costley, J. Chamberlain, “Measurement of the emission from a time-varying plasma at millimetre and submillimetre wavelengths,” in Proceedings of the Conference on Precision Electromagnetic Measurements, IEE Conference Publ.113, 210–212 (1974).
  14. B. Carli, P. A. R. Ade, U. Cortesi, P. Dickinson, M. Epifani, F. C. Gannaway, A. Gignoli, C. Keim, C. Lee, C. Meny, J. Leotin, F. Mencaraglia, A. G. Murray, I. G. Nolt, M. Ridolfi, “SAFIRE-A spectroscopy of the atmosphere using far-infrared emission/airborne,” J. Atmos. Ocean. Technol. (to be published).
  15. H. L. Buijs, H. P. Gush, “High resolution Fourier transform spectroscopy,” J. Phys. C2 28, 105–108 (1967).
  16. B. Carli, F. Mencaraglia, “Signal doubling in the Martin–Puplett interferometer,” Int. J. Infrared Millimeter Waves 2, 1045–1051 (1981). [CrossRef]
  17. S. Aiello, A. Barbis, A. Bonetti, V. Natale, G. Valmori, G. Ventura, “A high efficiency polarizing interferometer for astronomical observations in the submillimetric region,” Infrared Phys. 26, 347–352 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited