OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 18 — Jun. 20, 1999
  • pp: 3951–3960

Pulsed, single-mode cavity ringdown spectroscopy

Roger D. van Zee, Joseph T. Hodges, and J. Patrick Looney  »View Author Affiliations


Applied Optics, Vol. 38, Issue 18, pp. 3951-3960 (1999)
http://dx.doi.org/10.1364/AO.38.003951


View Full Text Article

Enhanced HTML    Acrobat PDF (163 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discuss the use of single-mode cavity ringdown spectroscopy with pulsed lasers for quantitative gas density and line strength measurements. The single-mode approach to cavity ringdown spectroscopy gives single exponential decay signals without mode beating, which allows measurements with uncertainties near the shot-noise limit. The technique is demonstrated with a 10-cm-long ringdown cavity and a pulsed, frequency-stabilized optical parametric oscillator as the light source. A noise-equivalent absorption coefficient of 5 × 10-10 cm-1 Hz-1/2 is demonstrated, and the relative standard deviation in the ringdown time (στ/τ) extracted from a fit to an individual ringdown curve is found to be the same as that for an ensemble of hundreds of independent measurements. Repeated measurement of a line strength is shown to have a standard deviation <0.3%. The effects of normally distributed noise on quantities measured using cavity ringdown spectroscopy are discussed, formulas for the relative standard deviation in the ringdown time are given in the shot- and technical-noise limits, and the noise-equivalent absorption coefficient in these limits are compared for pulsed and continuous-wave light sources.

© 1999 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(020.3690) Atomic and molecular physics : Line shapes and shifts
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(300.3700) Spectroscopy : Linewidth
(300.6390) Spectroscopy : Spectroscopy, molecular

History
Original Manuscript: November 23, 1998
Revised Manuscript: February 3, 1999
Published: June 20, 1999

Citation
Roger D. van Zee, Joseph T. Hodges, and J. Patrick Looney, "Pulsed, single-mode cavity ringdown spectroscopy," Appl. Opt. 38, 3951-3960 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-18-3951


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. E. De Lange, “Losses suffered by coherent light redirected and refocussed many times in an enclosed medium,” Bell Syst. Tech. J. 44, 283–302 (1965). [CrossRef]
  2. W. M. Hughes, N. T. Olson, R. Hunter, “Experiments on 558-nm argon oxide laser system,” Appl. Phys. Lett. 28, 81–83 (1976). [CrossRef]
  3. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  4. D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone band with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993). [CrossRef]
  5. J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996). [CrossRef]
  6. J. P. Looney, J. T. Hodges, R. D. van Zee, “Quantitative absorption measurements using cavity-ringdown spectroscopy with pulsed lasers,” in Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique, K. A. Busch, M. A. Busch, eds. (Oxford U. Press, Oxford, UK, 1998), Chap. 7.
  7. K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996). [CrossRef]
  8. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995). [CrossRef]
  9. J. T. Hodges, J. P. Looney, R. D. van Zee, “Laser bandwidth effects in quantitative cavity ring-down spectroscopy,” Appl. Opt. 35, 4112–4116 (1996). [CrossRef] [PubMed]
  10. R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2827 (1995). [CrossRef]
  11. D. L. Huestis, R. A. Copeland, K. Knutsen, T. G. Slanger, R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Branch intensities and oscillator strengths for the Herzberg absorption systems of oxygen,” Can. J. Phys. 72, 1109–1121 (1994). [CrossRef]
  12. L. A. Pugh, K. N. Rao, “Intensities from infrared spectra,” in Modern Spectroscopy, K. N. Rao, ed. (Academic, New York, 1976), Vol. 1, pp. 165–177.
  13. R. D. van Zee, J. P. Looney, J. T. Hodges, “Measuring pressure with cavity ring-down spectroscopy,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. de Groot, ed., Proc. SPIE3535, 46–55 (1999). [CrossRef]
  14. W. J. Alford, T. D. Raymond, A. V. Smith, “Characterization of a ring optical parametric oscillator,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds. Vol. 20, of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1994), pp. 476–479.
  15. A. V. Smith, W. J. Alford, T. D. Raymond, M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2267 (1995). [CrossRef]
  16. E. Riedle, S. H. Ashworth, J. T. Farrell, D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994). [CrossRef]
  17. D. F. Plusquellic, O. Votava, D. J. Nesbitt, “Absolute frequency stabilization of an injection-seeded optical parametric oscillator,” Appl. Opt. 35, 1464–1472 (1996). [CrossRef] [PubMed]
  18. J. L. Hall, “Laser stabilization lectures,” Fall Semester 1985, University of Colorado, Boulder, Colo.
  19. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 4–14 (1990).
  20. H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966). [CrossRef]
  21. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), Chaps. 6, 9, and 10.
  22. The data along a ring-down curve are not, strictly speaking, statistically independent because either the detector electronics or digitizer impose a bandwidth filter on the signal. K. K. Lehmann has derived formulas for fitting ring-down signals in which the data are correlated, and he will present these algorithms in a forthcoming publication.
  23. R. von Mises, Mathematical Theory of Probability and Statistics (Academic, New York, 1964), Chaps. IX(C) and IX(E).
  24. W. A. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989), Chap. 13.
  25. M. D. Levenson, G. L. Eesley, “Polarization selective optical heterodyne detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. 19, 1–17 (1979). [CrossRef]
  26. M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998). [CrossRef]
  27. H. D. Babcock, L. Herzberg, “Fine structure of the red system of atmospheric oxygen band,” Astrophys. J. 108, 167–190 (1948). [CrossRef]
  28. K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987). [CrossRef]
  29. D. C. Hovde, J. H. Timmermans, G. Scoles, K. K. Lehmann, “High power, injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991). [CrossRef]
  30. D. Romanini, K. K. Lehmann, “Line-mixing in the 106 ← 000 overtone transition of HCN,” J. Chem. Phys. 105, 81–88 (1996). [CrossRef]
  31. R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Double-resonance spectroscopy on triplet states of CO,” J. Mol. Spectrosc. 165, 303–314 (1994). [CrossRef]
  32. N. Seiser, D. C. Robie, “Pressure broadening in the oxygen b1∑g+ (v′ = 1) ← X3∑g- (v″ = 0) band measured by cavity ring-down spectroscopy,” Chem. Phys. Lett. 282, 263–267 (1998). [CrossRef]
  33. R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996). [CrossRef]
  34. D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997). [CrossRef]
  35. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998). [CrossRef]
  36. S. L. Bragg, J. W. Brault, W. H. Smith, “Line positions and strengths in the H2 quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982). [CrossRef]
  37. D. W. Ferguson, K. N. Rao, M. E. Mickelson, L. E. Larson, “An experimental study of the 4-0 and 5-0 quadrupole vibration rotation bands of H2 in the visible,” J. Mol. Spectrosc. 160, 315–325 (1993). [CrossRef]
  38. L. A. Guildner, D. P. Johnson, F. E. Jones, “Vapor pressure of water at its triple point,” J. Res. Natl. Bur. Stand. 80, 505–521 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited