OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 18 — Jun. 20, 1999
  • pp: 3961–3967

Transmission features of frequency-selective components in the far infrared determined by terahertz time-domain spectroscopy

Carsten Winnewisser, Frank Lewen, Jochen Weinzierl, and Hanspeter Helm  »View Author Affiliations


Applied Optics, Vol. 38, Issue 18, pp. 3961-3967 (1999)
http://dx.doi.org/10.1364/AO.38.003961


View Full Text Article

Enhanced HTML    Acrobat PDF (387 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Transmission and phase-shift characteristics of dichroic high-pass filters with cutoff frequencies as high as 1.11 THz and of a cross-shaped grid bandpass filter with a resonance frequency of 280 GHz were measured with an electro-optic sampling terahertz time-domain spectrometer operating between 0.1 and 2 THz. Good agreement with transmission theories is found. We also compare the transmission performance of cascaded dichroic filters with that of cross-shaped grid bandpass filters. Both types of bandpass filter permit frequency-selective ultrafast experiments in the far-infrared spectral region. In the millimeter and the submillimeter wavelength regions, which are difficult to access by conventional means, knowledge of the frequency response of frequency-selective components is important for applications in frequency mixing, multiplying, and multiplexing in quasi-optical systems.

© 1999 Optical Society of America

OCIS Codes
(240.7040) Optics at surfaces : Tunneling
(300.6370) Spectroscopy : Spectroscopy, microwave
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.2250) Ultrafast optics : Femtosecond phenomena

History
Original Manuscript: December 23, 1998
Revised Manuscript: March 16, 1999
Published: June 20, 1999

Citation
Carsten Winnewisser, Frank Lewen, Jochen Weinzierl, and Hanspeter Helm, "Transmission features of frequency-selective components in the far infrared determined by terahertz time-domain spectroscopy," Appl. Opt. 38, 3961-3967 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-18-3961


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications (IEEE Press, Piscataway, N.J., 1998). [CrossRef]
  2. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967). [CrossRef]
  3. V. P. Tomaselli, D. C. Edewaard, P. Gillan, K. D. Möller, “Far-infrared bandpass filters from cross-shaped grids,” Appl. Opt. 20, 1361–1366 (1981). [CrossRef] [PubMed]
  4. F. Lewen, S. P. Belov, F. Maiwald, Th. Klaus, G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).
  5. D. A. Weitz, W. J. Skocpol, M. Tinkham, “Capacitive-mesh output couplers for optically pumped far-infrared lasers,” Opt. Lett. 3, 13–15 (1978). [CrossRef] [PubMed]
  6. R. D. Rawcliffe, C. M. Randall, “Metal mesh interference filters for the far infrared,” Appl. Opt. 6, 1353–1358 (1967). [CrossRef] [PubMed]
  7. C. Winnewisser, F. Lewen, H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys. A 66, 593–598 (1998). In this reference the phase shift Δϕ(ν) should read as Δϕ(ν) = ϕsample(ν) - ϕref(ν), and line 3 of Table 1 should read as filter C, l = 0.290 mm, d = 0.235 mm, s = 0.297 mm.
  8. M. van Exter, Ch. Fattinger, D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989). [CrossRef]
  9. T. Timusk, P. L. Richards, “Near millimeter wave bandpass filters,” Appl. Opt. 20, 1355–1360 (1981). [CrossRef] [PubMed]
  10. J. W. Archer, “A novel quasi-optical frequency multiplier design for millimeter and submillimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 32, 421–426 (1984). [CrossRef]
  11. A. Roberts, M. L. von Bibra, H.-P. Gemünd, E. Kreysa, “Thick grids with circular apertures: a comparison of theoretical and experimental performance,” Int. J. Infrared Millim. Waves 15, 505–517 (1994). [CrossRef]
  12. R. Cahill, E. A. Parker, “Frequency selective surface design for submillimetric demultiplexing,” Microwave Opt. Technol. Lett. 13, 595–597 (1994). [CrossRef]
  13. N. Marcuvitz, Waveguide Handbook (McGraw-Hill, New York, 1951).
  14. L. A. Robinson, “Electrical properties of metal-loaded radomes,” (National Technical Information Service, U.S. Department of Commerce, Springfield, Va., 1960).
  15. C.-C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave Theory Tech. 21, 1–7 (1973). [CrossRef]
  16. R. C. McPhedran, D. Maystre, “On the theory and solar application of inductive grids,” Appl. Phys. 14, 1–20 (1977). [CrossRef]
  17. CST Computer Simulation Technology GmbH, Lauteschlägerstrasse 38, D-64289 Darmstadt, Germany.
  18. D. Steup, J. Weinzierl, “Resonant THz-meshes,” presented at the Fourth International Workshop on THz Electronics, Erlangen-Tennenlohe, Germany, 5–6 September 1996.
  19. C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997). [CrossRef]
  20. Q. Wu, X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995). [CrossRef]
  21. A. Nahata, D. A. Auston, T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–153 (1996). [CrossRef]
  22. P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996). [CrossRef]
  23. A. Gürtler, C. Winnewisser, H. Helm, P. Uhd Jepsen, “Experimental and numerical studies of THz pulse propagation in the near and far field,” presented at the Twenty-First International Conference on Lasers and Laser Applications, 7–11 December 1998, Tucson, Ariz., paper TJ.5.
  24. P. R. Griffiths, J. A. De Herres, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986), Vol. 83: Chemical Analysis.
  25. C. Letrou, M. Gheudin, “Dichroic diplexer design for millimeter waves,” Int. J. Infrared Millim. Waves 13, 27–42 (1992). [CrossRef]
  26. D. W. Porterfield, J. L. Densing, E. R. Mueller, T. W. Crowe, R. M. Weikle, “Resonant metal-mesh bandpass filters for the far infrared,” Appl. Opt. 33, 6046–6052 (1994). [CrossRef] [PubMed]
  27. J. Bromage, S. Radic, G. P. Agrawal, C. R. Stroud, P. M. Fauchet, R. Sobolewski, “Spatiotemporal shaping of half-cycle terahertz pulses by diffraction through conductive aperatures of finite thickness,” J. Opt. Soc. Am. B 15, 1399–1405 (1998). [CrossRef]
  28. A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 22, 908–919 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited