OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 19 — Jul. 1, 1999
  • pp: 4217–4227

Integrating the Digitized Backscattered Image to Measure Absorption and Reduced-Scattering Coefficients in vivo

Laure Gobin, Loïc Blanchot, and Hervé Saint-Jalmes  »View Author Affiliations


Applied Optics, Vol. 38, Issue 19, pp. 4217-4227 (1999)
http://dx.doi.org/10.1364/AO.38.004217


View Full Text Article

Acrobat PDF (278 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Measurement of absorption and reduced-scattering optical coefficients μa and μs′ is possible when a steady-state backscattered image is used on a sample surface. A new method for processing the backscattered image, acquired with a CCD, has been developed. The image is integrated to decrease sensitivity to noise. The resulting curve is defined as the integral reflectance. The curve is then fitted with a relaxation model to evaluate μa and μs′. We have validated the method with calibrated scattering and absorption phantoms. The integral reflectance method is then applied to measurements of the μa and μs′ coefficients of human skin in vivo.

© 1999 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(170.6930) Medical optics and biotechnology : Tissue
(290.0290) Scattering : Scattering
(300.1030) Spectroscopy : Absorption

Citation
Laure Gobin, Loïc Blanchot, and Hervé Saint-Jalmes, "Integrating the Digitized Backscattered Image to Measure Absorption and Reduced-Scattering Coefficients in vivo," Appl. Opt. 38, 4217-4227 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-19-4217


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Bolt and J. ten Bosch, “On determination of optical parameters for turbid materials,” Waves Random Media 4, 233–242 (1994).
  2. S. L. Jacques, A. Gutsche, J. Schwartz, L. Wang, and F. K. Tittel, “Video reflectometry to specify optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, and P. Van der Zee, eds., Vol. ISII of SPIE Institute Series (SPIE, Bellingham, Wash., 1993), pp. 211–226.
  3. P. Van der Zee, “Methods for measuring the optical properties of tissue samples in the visible and near infrared wavelength range,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, and P. Van der Zee, eds., Vol. ISII of SPIE Institute Series (SPIE, Bellingham, Wash., 1993), pp. 166–192.
  4. B. Gélébart, J. M. Tualle, E. Tinet, S. Avrillier, and J. P. Ollivier, “Time and space resolved reflectance from multilayered turbid media,” in Laser–Tissue Interaction, Tissue Optics, and Laser Welding, G. P. Delacretaz, G. Godlewski, R. Pini, R. W. Steiner, and L. O. Svaasand, eds., Proc. SPIE 3195, 40–50 (1998).
  5. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
  6. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
  7. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equation for the reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997).
  8. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
  9. L. Wang and S. L. Jacques, “Use of a laser beam with an oblique incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34, 2362–2366 (1995).
  10. L. Wang and S. L. Jacques, Monte Carlo Modeling of Light Transport Multilayered Tissues in Standard C, Software and 131-p manual (Laser Biology Research Laboratory, University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Tex. 77030, 1992), e-mail: sljaser.mda.uth.tmc.edu.
  11. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in galaxy,” Astrophys. J. 93, 70–83 (1941).
  12. R. A. J. Groenhius, H. A. Ferwerda, and J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory,” Appl. Opt. 22, 2456–2462 (1983).
  13. L. Voisin, L. Blanchot, D. Kalinowski, J. Virmont, G. Ledanois, and H. Saint-Jalmes, “2D CCD imaging in oblique incidence for noninvasive measurements of biological tissues optical coefficients,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, and M. Ferrari, eds., Proc. SPIE 3194, 279–284 (1998).
  14. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  15. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).
  16. G. Baillargeon and J. Rainville, Statistique appliquée, Tome 2, Tests statistiques, régression et corrélations (Sciences Mathématiques Gestion, Trois Rivières, Québec, 1980).
  17. J. M. Schmitt, G. X. Zhou, E. C. Walker, and R. T. Wall, “Multilayers model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
  18. R. Graff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnouds, and W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
  19. A. Kienle, L. Lilge, M. S. Patterson, B. C. Wilson, R. Hibst, and R. Steiner, “Investigation of multi-layered tissue with in vivo reflectance measurements,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, and V. V. Tuchin, eds., Proc. SPIE 2326, 212–221 (1994).
  20. N. Dögnitz, G. Wagnières, A. Kienle, and H. van den Berg, “Determination of the absorption and reduced scattering coefficients of human skin and bladder by spatial frequency domain reflectometry,” in Laser–Tissue Interaction, Tissue Optics, and Laser Welding, G. P. Delacretaz, G. Godlewski, R. Pini, R. W. Steiner, and L. O. Svaasand, eds., Proc. SPIE 3195, 102–109 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited