OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 19 — Jul. 1, 1999
  • pp: 4237–4246

Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano  »View Author Affiliations


Applied Optics, Vol. 38, Issue 19, pp. 4237-4246 (1999)
http://dx.doi.org/10.1364/AO.38.004237


View Full Text Article

Enhanced HTML    Acrobat PDF (2424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical imaging and localization of objects inside a highly scattering medium, such as a tumor in the breast, is a challenging problem with many practical applications. Conventional imaging methods generally provide only two-dimensional (2-D) images of limited spatial resolution with little diagnostic ability. Here we present an inversion algorithm that uses time-resolved transillumination measurements in the form of a sequence of picosecond-duration intensity patterns of transmitted ultrashort light pulses to reconstruct three-dimensional (3-D) images of an absorbing object located inside a slab of a highly scattering medium. The experimental arrangement used a 3-mm-diameter collimated beam of 800-nm, 150-fs, 1-kHz repetition rate light pulses from a Ti:sapphire laser and amplifier system to illuminate one side of the slab sample. An ultrafast gated intensified camera system that provides a minimum FWHM gate width of 80 ps recorded the 2-D intensity patterns of the light transmitted through the opposite side of the slab. The gate position was varied in steps of 100 ps over a 5-ns range to obtain a sequence of 2-D transmitted light intensity patterns of both less-scattered and multiple-scattered light for image reconstruction. The inversion algorithm is based on the diffusion approximation of the radiative transfer theory for photon transport in a turbid medium. It uses a Green’s function perturbative approach under the Rytov approximation and combines a 2-D matrix inversion with a one-dimensional Fourier-transform inversion to achieve speedy 3-D image reconstruction. In addition to the lateral position, the method provides information about the axial position of the object as well, whereas the 2-D reconstruction methods yield only lateral position.

© 1999 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(290.7050) Scattering : Turbid media

History
Original Manuscript: November 12, 1998
Revised Manuscript: March 11, 1999
Published: July 1, 1999

Citation
W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, "Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements," Appl. Opt. 38, 4237-4246 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-19-4237


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. For a brief review of optical imaging techniques, see S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7(3), 16–22 (1996).
  2. G. J. Muller, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zeeet, eds., Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS 11 of SPIE Institute Series (SPIE, Bellingham, Wash., 1993).
  3. L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991). [CrossRef] [PubMed]
  4. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995), and relevant references therein. [CrossRef] [PubMed]
  5. R. R. Alfano, X. Liang, L. Wang, P. P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid media,” Science 264, 1913–1915 (1994). [CrossRef] [PubMed]
  6. M. R. Hee, J. Izzat, J. Jacobson, J. G. Fujimoto, E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18, 950–952 (1993). [CrossRef] [PubMed]
  7. M. Cutler, “Transillumination as an aid in the diagnosis of breast lesion,” Surg. Gynecol. Obstet. 48, 721–730 (1929).
  8. A. O. Wist, P. P. Fatouros, S. L. Herr, “Increased spatial resolution in transillumination using collimated light,” IEEE Trans. Med. Imaging 12, 751–757 (1993). [CrossRef] [PubMed]
  9. S. R. Arridge, “The forward and inverse problems in time-resolved infrared imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS 11 of SPIE Institute Series (SPIE, Bellingham, Wash., 1993).
  10. E. Gratton, W. Mantolin, M. vande Ven, J. Fishkin, M. Maris, B. Chance, “A novel approach to optical tomography,” Bioimaging 1, 40–46 (1993), pp. 35–64. [CrossRef]
  11. E. B. de Haller, “Time-resolved transillumination and optical tomography,” J. Biomed. Opt. 1, 7–17 (1996). [CrossRef] [PubMed]
  12. J. C. Hebden, S. R. Arridge, D. T. Deply, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997); S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853 (1997). [CrossRef] [PubMed]
  13. E. Marshall, “Search for a killer: focus shifts from fat to hormones in a special report on breast cancer,” Science 259, 618–621 (1993). [CrossRef] [PubMed]
  14. R. R. Alfano, A. Pradhan, G. C. Tang, S. J. Wahl, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015–1023 (1989). [CrossRef]
  15. M. S. Feld, R. Manoharan, J. Salenius, J. Ornstein-Carndona, T. J. Romer, J. F. Brennan, R. R. Dasari, Y. Wang, “Detection and characterization of human tissue lesions with near-infrared Raman spectroscopy,” in Advances in Fluorescence Sensing Technology II, J. R. Lakowicz, ed., Proc. SPIE2388, 99–104 (1995). [CrossRef]
  16. K. M. Yoo, R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320–322 (1990). For a discussion of the characteristics of photons transmitted through a turbid medium, see Refs. 1 and 12 and relevant references in those papers. [CrossRef] [PubMed]
  17. W. Cai, B. B. Das, F. Liu, M. Zevallos, M. Lax, R. R. Alfano, “Time-resolved optical diffusion tomographic image reconstruction in highly scattering turbid media,” Proc. Natl. Acad. Sci. USA 93, 13561–13564 (1996). [CrossRef] [PubMed]
  18. W. Cai, B. B. Das, F. Liu, Fan An Zeng, M. Lax, R. R. Alfano, “Three-dimensional image reconstruction in highly scattering turbid media,” in Proceedings of Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 241–248 (1997).
  19. J. Singer, F. Grunbaum, P. Kohn, J. Zubelli, “Image reconstruction of the interior of the bodies that diffuse radiation,” Science 248, 990–992 (1990). [CrossRef] [PubMed]
  20. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996). [CrossRef]
  21. S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997). [CrossRef] [PubMed]
  22. A. H. Hielscher, A. Klose, D. Catarious, K. Hanson, “Tomographic imaging of biological tissue by time-resolved model-based iterative image reconstruction,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of 1998 OSA Trends in Optics and Photonics (1998), pp. 156–161.
  23. H. Jiang “Three-dimensional optical image reconstruction: finite element approach,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of 1998 OSA Trends in Optics and Photonics (1998), pp. 168–170.
  24. C. L. Matson, N. Clark, L. McMackin, J. S. Fender, “Three-dimensional tumor localization in thick tissue with the use of diffuse photon-density waves,” Appl. Opt. 36, 214–220 (1997). [CrossRef] [PubMed]
  25. S. R. Arridge, W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998). [CrossRef]
  26. P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L curve,” SIAM (Soc. Ind. Appl. Math.) Rev. 34, 561–580 (1992).
  27. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef] [PubMed]
  28. Q. Fu, F. Seier, S. K. Gayen, R. R. Alfano, “High-average-power, kilohertz-repetition-rate, sub-100-fs Ti:sapphire amplifier system,” Opt. Lett. 22, 712–714 (1997). [CrossRef] [PubMed]
  29. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Simultaneous scattering and absorption images of heterogeneous media using diffusive waves within the Rytov approximation,” in Proceedings of Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 320–327 (1997).
  30. S. K. Gayen, M. E. Zevallos, M. Alrubaiee, J. M. Evans, R. R. Alfano, “Two-dimensional near-infrared transillumination imaging of biomedical media with a chromium-doped forsterite laser,” Appl. Opt. 37, 5327–5336 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited