OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 19 — Jul. 1, 1999
  • pp: 4252–4261

Polarization discrimination of coherently propagating light in turbid media

Vanitha Sankaran, Klaus Schönenberger, Joseph T. Walsh, Jr., and Duncan J. Maitland  »View Author Affiliations


Applied Optics, Vol. 38, Issue 19, pp. 4252-4261 (1999)
http://dx.doi.org/10.1364/AO.38.004252


View Full Text Article

Enhanced HTML    Acrobat PDF (670 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the use of degree of polarization to discriminate unscattered and weakly scattered light from multiply scattered light in an optically turbid material. We use spatially resolved measurements of the degree of polarization to compare how well linearly and circularly polarized light survives in a sample. Experiments were performed on common tissue phantoms consisting of polystyrene and Intralipid microsphere suspensions and on adipose and arterial tissue. The results indicate that polarization is maintained even after unpolarized irradiance through each sample has been extinguished by several orders of magnitude. The results also show that polarized light propagation in common tissue phantoms is distinctly different from polarized light propagation in the two tissues investigated. Further, these experiments illustrate when polarization is an effective discrimination criterion and when it is not. The potential of a polarization-based discrimination scheme to image through the biological and nonbiological samples investigated here is also discussed.

© 1999 Optical Society of America

OCIS Codes
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(260.5210) Physical optics : Photoionization
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

History
Original Manuscript: December 17, 1998
Revised Manuscript: March 15, 1999
Published: July 1, 1999

Citation
Vanitha Sankaran, Klaus Schönenberger, Joseph T. Walsh, and Duncan J. Maitland, "Polarization discrimination of coherently propagating light in turbid media," Appl. Opt. 38, 4252-4261 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-19-4252


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. R. Bissonnette, “Imaging through fog and rain,” Opt. Eng. 31, 1045–1052 (1992). [CrossRef]
  2. J. S. Ryan, A. I. Carswell, “Laser beam broadening and depolarization in dense fogs,” J. Opt. Soc. Am. 68, 900–908 (1978). [CrossRef]
  3. V. L. Granatstein, M. Rhinewine, A. M. Levine, “Depolarization of laser light scattered from turbid water,” Appl. Opt. 11, 1870–1871 (1972). [CrossRef] [PubMed]
  4. G. R. Fournier, D. Bonnier, J. L. Forand, P. W. Pace, “Range-gated underwater laser imaging-system,” Opt. Eng. 32, 2185–2190 (1993). [CrossRef]
  5. O. Emile, F. Bretenaker, A. Le Floch, “Rotating polarization imaging in turbid media,” Opt. Lett. 21, 1706–1708 (1996). [CrossRef] [PubMed]
  6. K. M. Yoo, B. B. Das, R. R. Alfano, “Imaging of a translucent object hidden in a highly scattering medium from the early portion of the diffuse component of a transmitted ultrafast laser pulse,” Opt. Lett. 17, 958–960 (1992). [CrossRef] [PubMed]
  7. B. J. Tromberg, L. O. Svaasand, T.-T. Tsay, R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32, 607–616 (1993). [CrossRef] [PubMed]
  8. B. Devaraj, M. Usa, K. P. Chan, T. Akatsuha, “Recent advances in coherent detection imaging (CDI) in biomedicine: laser tomography of human tissues in vivo and in vitro,” IEEE J. Sel. Topics Quantum Electron. 2, 1008–1016 (1996). [CrossRef]
  9. D. S. Dilworth, E. N. Leith, J. L. Lopez, “Imaging absorbing structures within thick diffusing media,” Appl. Opt. 29, 691–698 (1990). [CrossRef] [PubMed]
  10. J. M. Schmitt, A. H. Gandbakhche, R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992). [CrossRef] [PubMed]
  11. D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994). [CrossRef]
  12. S. P. Morgan, M. P. Khong, M. G. Somekh, “Effects of polarization state and scatterer concentration on optical imaging through scattering media,” Appl. Opt. 36, 1560–1565 (1997). [CrossRef] [PubMed]
  13. F. C. MacKintosh, J. X. Zhu, D. J. Pine, D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989). [CrossRef]
  14. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, New York, 1980).
  15. D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, San Diego, Calif., 1990), pp. 285–290.
  16. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 7–136.
  17. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, San Diego, Calif., 1969).
  18. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef] [PubMed]
  19. W.-F. Cheong, “Summary of optical properties,” in Optical–Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert eds. (Plenum, New York, 1985), pp. 275–303.
  20. L. E. Mertens, F. S. Replogle, “Use of point spread and beam spread functions for analysis of imaging systems in water,” J. Opt. Soc. Am. 67, 1105–1117 (1977). [CrossRef]
  21. R. A. Maffione, J. M. Voss, C. D. Mobley, “Theory and measurements of the complete beam spread function of sea ice,” Limnol. Oceanogr. 43, 34–43 (1998). [CrossRef]
  22. A. Dunn, R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Topics Quantum Electron. 2, 898–905 (1996). [CrossRef]
  23. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, A. Shen, T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998). [CrossRef]
  24. J. A. G. Rhodin, Histology: A Text and Atlas (Oxford U. Press, New York, 1974).
  25. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J. D. Watson, Molecular Biology of the Cell (Garland, New York, 1983).
  26. W. Bloom, D. W. Fawcett, A Textbook of Histology (Saunders, Philadelphia, Pa., 1986).
  27. D. Maurice, “Structure and transparency of the cornea,” J. Physiol. 136, 263–287 (1957). [PubMed]
  28. R. W. Hart, R. A. Farrell, “Light scattering in the cornea,” J. Opt. Soc. Am. 59, 766–774 (1969). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited