OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 2 — Jan. 10, 1999
  • pp: 339–351

Highly Corrected Submicrometer Grid Patterning on Curved Surfaces

Kenneth M. Baker  »View Author Affiliations


Applied Optics, Vol. 38, Issue 2, pp. 339-351 (1999)
http://dx.doi.org/10.1364/AO.38.000339


View Full Text Article

Acrobat PDF (505 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact holographic projector system was built and tested. This projection system offers a practical approach for making a highly corrected mesh or grid pattern on curved surfaces. The pattern can range in size from multimicrometer to submicrometer dimensions and be recorded in either positive or negative photoresist. Standing-wave interference patterns in the form of a diverging close-packed lattice of either hexagonal or square rodlike intensity maxima extending outward from a point or a locus of points are produced by multiple-beam holography that involves the combination of a holographic diffraction grating and a hypercomatic focusing objective.

© 1999 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(110.3960) Imaging systems : Microlithography

Citation
Kenneth M. Baker, "Highly Corrected Submicrometer Grid Patterning on Curved Surfaces," Appl. Opt. 38, 339-351 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-2-339


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. U. Krackhardt, J. N. Mait, and N. Streibl, “Upper bound on the diffraction efficiency of phase-only fanout elements,” Appl. Opt. 31, 27–37 (1992).
  2. B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13, 160–168 (1969).
  3. W. J. Dallas, “Computer-generated holograms,” in The Computer in Optical Research and Applications, B. R. Frieden, ed. (Springer-Verlag, New York, 1980) pp. 291–363.
  4. S. M. Arnold, “Electron beam fabrication of computer-generated holograms,” Opt. Eng. 24, 803–807 (1985).
  5. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, Jr., “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
  6. J. C. Patau, L. B. Lesem, P. M. Hirsch, and J. A. Jordan, Jr., “Incoherent filtering using kinoforms,” IBM J. Res. Dev. 14, 485–491 (1970).
  7. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices ED-29, 1812–1846 (1982).
  8. Y. C. Pati and T. Kailath, “Phase-shifting masks for microlithography: automated design and mask requirements,” J. Opt. Soc. Am. A 11, 2438–2452 (1994).
  9. K. Ronse, M. Op de Beeck, L. Van den hove, and J. Engelen, “Fundamental principles of phase shifting masks by Fourier optics: theory and experimental verification,” J. Vac. Sci. Technol. B 12, 589–600 (1994).
  10. R. L. Morrison, S. L. Walker, and T. J. Cloonan, “Beam array generation and holographic interconnections in a free-space optical switching network,” Appl. Opt. 32, 2512–2518 (1993).
  11. J. R. Leger, G. J. Swanson, and W. B. Veldkamp, “Coherent laser addition using binary phase gratings,” Appl. Opt. 26, 4391–4399 (1987).
  12. D. H. Raguin, “Subwavelength structured surfaces and their applications,” in Diffractive and Miniaturized Optics, Vol. CR49 of SPIE Critical Reviews (SPIE, Bellingham, Wash., 1993), pp. 234–261.
  13. P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978).
  14. K. Shiraishi, T. Sato, and S. Kawakami, “Experimental verification of a form-birefringent polarization splitter,” Appl. Phys. Lett. 58, 211–212 (1991).
  15. L. H. Cescato, E. Gluch, and N. Streibl, “Holographic quarter-wave plates,” Appl. Opt. 29, 3286–3290 (1991).
  16. C. W. Haggans, L. Li, T. Fujita, and R. K. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1992).
  17. E. N. Glytsis and T. K. Gaylord, “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Appl. Opt. 31, 4459–4470 (1992).
  18. H. Haidner, P. Kipfer, W. Stork, and N. Streibl, “Zero-order gratings used as artificial distributed index medium,” Optik (Stuttgart) 89, 107–112 (1992).
  19. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).
  20. J. J. Cowan, “The recording and large scale replication of crossed holographic grating arrays using multiple beam interferometry,” in Application, Theory, and Fabrication of Periodic Structures, Diffraction Gratings, and Moiré Phenomena II, J. M. Lerner, ed., Proc. SPIE 503, 120–129 (1984).
  21. J. J. Cowan, “The holographic honeycomb microlens,” in Applications of Holography, L. Huff, ed., Proc. SPIE 523, 251–259 (1985).
  22. J. J. Cowan, “Method and apparatus for exposing photosensitive material,” U.S. Patent 4,496,216 (29 January 1985).
  23. Canon Kabushiki Kaisha, “Verfahren zur Herstellung eines Teil mit einer Anordnung von Mikrostrukturelementen auf demselben,” Ger. Offen. DE 2,952,607 (class G02B5/02) (publication date: 10 July 1980; application date: 28 December 1979; issue date: 14 April 1994). This patent is the oldest reference the author has found regarding the equiangular three-beam and equiangular four-beam interference patterns.
  24. T. Suzuki, K. Iizuka, K. Ohtaka, and H. Mizutani, “Focusing plate,” U.S. patent 4,421,398 (20 December 1983).
  25. W. T. Pawlewicz, P. M. Martin, R. W. Knoll, B. T. Smith, and W. M. Myers, “Transparent conductive coatings for electro-optic windows,” Tech. Rep. MMT A3 1134 (U.S. Army Missile Command, Redstone Arsenal, Ala., 1987).
  26. S. H. Zaidi, S. R. J. Brueck, F. M. Schellenberg, R. S. Mackay, K. Uekert, and J. J. Persoff, “Interferometric lithography exposure tool for 180-nm structures,” in Emerging Lithographic Technologies, D. E. Seeger, ed., Proc. SPIE 3048, 248–254 (1997).
  27. X. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, “Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14, 3339–3349 (1996).
  28. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical matter: crystallization and binding in intense optical fields,” Science 249, 749–754 (1990).
  29. K. M. Baker, D. L. Shealy, and W. Jiang, “Directional light filters: three-dimensional azo dye formed images within optical resins,” in Diffractive and Holographic Optics Technology II, I. Cindrich and S. H. Lee, eds., Proc. SPIE 2404, 144–158 (1995).
  30. K. M. Baker, “Directional light filter and holographic projector system for its production,” U.S. Patent 5,642,209 (24 June 1997).
  31. C. H. Lin, Z. H. Zhu, and Y. H. Lo, “New grating fabrication technology for optoelectronic devices: cascaded self-induced holography,” Appl. Phys. Lett. 67, 3072–3074 (1995).
  32. C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, “Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays,” IEEE J. Quantum Electron. 32, 1752–1759 (1996).
  33. K. M. Baker, “Extreme depth-of-field optical lens and holographic projector system for its production,” U.S. patent 5,822,091 (13 October 1998).
  34. W. Jiang, D. L. Shealy, and J. C. Martin, “Design and testing of a refractive reshaping system,” in Current Developments in Optical Engineering III, R. E. Fischer and W. J. Smith, eds., Proc. SPIE 2000, 64–75 (1993).
  35. W. Jiang, D. L. Shealy, and K. M. Baker, “Optical design and testing of a holographic projection system,” in Diffractive and Holographic Optics Technology, I. Cindrich and S. H. Lee, eds., Proc. SPIE 2152, 244–252 (1994).
  36. W. Jiang, D. L. Shealy, and K. M. Baker, “Physical optical analysis of the performance of a holographic projection system,” in Diffractive and Holographic Optics Technology II, I. Cindrich and S. H. Lee, eds., Proc. SPIE 2404, 227–234 (1995).
  37. Applied Physics Specialties, Ltd., 17 Prince Andrew Place, Dow Mills, Ontario M3C 2H2, Canada.
  38. R. Mathews, Optical Works, Inc., 26280 Olhava Road, NW, #A, Poulsbo, WA 98370–9435 (personal communication, 6 November 1997).
  39. R. P. Cargille Laboratories, Inc., 55 Commerce Road, Cedar Grove, NJ 07009–1289.
  40. E. H. Anderson, C. M. Horwitz, and H. I. Smith, “Holographic lithography with thick photoresist,” Appl. Phys. Lett. 43, 874–875 (1983).
  41. Processing instructions for the Shipley Microposit S1800 series photoresists are available from Shipley Company, 455 Forest Street, Marlboro, MA 01752.
  42. J. M. Kurmer, J. I. Halman, K. A. Ramsey, D. L. Jones, and J. McManigal, “Polarization effects of resonant mesh structures fabricated on IR transmitting windows,” in Window and Dome Technologies and Materials II, P. Klocek, ed., Proc. SPIE 1326, 165–175 (1990).
  43. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). See also the review and commentary of this paper by R. Sambles, “More than transparent,” Nature 391, 641–642 (1998).
  44. E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–194 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited