OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 2 — Jan. 10, 1999
  • pp: 386–393

Thermal fixing of 10,000 holograms in LiNbO3:Fe

Xin An, Demetri Psaltis, and Geoffrey W. Burr  »View Author Affiliations

Applied Optics, Vol. 38, Issue 2, pp. 386-393 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (423 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss thermal fixing as a solution to the volatility problem in holographic storage systems that use photorefractive materials such as LiNbO3:Fe. We present a systematic study to characterize the effect of thermal fixing on the error performance of a large-scale holographic memory. We introduce a novel, to our knowledge, incremental fixing schedule to improve the overall system fixing efficiency. We thermally fixed 10,000 holograms in a 90°-geometry setup by using this new schedule. All the fixed holograms were retrieved with no errors.

© 1999 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(210.4680) Optical data storage : Optical memories

Original Manuscript: June 1, 1998
Revised Manuscript: September 3, 1998
Published: January 10, 1999

Xin An, Demetri Psaltis, and Geoffrey W. Burr, "Thermal fixing of 10,000 holograms in LiNbO3:Fe," Appl. Opt. 38, 386-393 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1991). [CrossRef]
  2. D. Psaltis, F. H. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995). [CrossRef]
  3. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994). [CrossRef]
  4. J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971). [CrossRef]
  5. W. Bollmann, H. J. Stöhr, “Incorporation and mobility of OH- ions in LiNbO3 crystals,” Phys. Status Solidi A 39, 477–484 (1977). [CrossRef]
  6. H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981). [CrossRef]
  7. S. Klauer, M. Wöhlecke, S. Kapphan, “Isotopic effect protonic conductivity in LiNbO3,” Radiat. Effects Defects Solids 119, 699–704 (1991). [CrossRef]
  8. W. Meyer, P. Würfel, R. Munser, G. Müller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979). [CrossRef]
  9. P. Hertel, K. H. Ringhofer, R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987). [CrossRef]
  10. M. Carrascosa, F. Agullo-Lopez, “Theoretical modeling of the fixing and developing of holographic gratings in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990). [CrossRef]
  11. A. Yariv, S. Orlov, G. Rakuljic, V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 1334–1336 (1995). [CrossRef] [PubMed]
  12. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  13. D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975). [CrossRef]
  14. J. F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, L. Hesselink, “Digital holographic storage system incorporating thermal fixing in lithium niobate,” Opt. Lett. 21, 1615–1617 (1996). [CrossRef] [PubMed]
  15. X. An, D. Psaltis, “Thermal fixing of 10,000 holograms in LiNbO3:Fe,” paper presented at the Optical Society of America Annual Meeting, Rochester, New York, 10–24 October 1996, paper MAAA5.
  16. S. Orlov, “Holographic storage dynamics, phase conjugation, and nonlinear optics in photorefractive materials,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1996).
  17. G. Burr, X. An, D. Psaltis, F. Mok, “Large-scale rapid access holographic memory,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, S. Tyan, eds., Proc. SPIE2514, 363–371 (1995). [CrossRef]
  18. The authors, along with F. H. Mok, are preparing the following paper for publication: “Large-scale random-access holographic memory using LiNbO3:Fe.”
  19. D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artificial neural networks,” Nature 343, 325–330 (1990). [CrossRef] [PubMed]
  20. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988). [CrossRef]
  21. G. W. Burr, D. Psaltis, “Effect of the oxidation-state of LiNbO3:Fe on the diffraction efficiency of multiple holograms,” Opt. Lett. 21, 893–895 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited