OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 2 — Jan. 10, 1999
  • pp: 399–408

Real-time digital optical matrix multiplication with a joint-transform correlator

Shuqun Zhang and Mohammad A. Karim  »View Author Affiliations


Applied Optics, Vol. 38, Issue 2, pp. 399-408 (1999)
http://dx.doi.org/10.1364/AO.38.000399


View Full Text Article

Enhanced HTML    Acrobat PDF (240 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Joint-transform correlation architecture is employed for digital matrix multiplication. Real-valued matrix–vector, complex-valued matrix–vector, real-valued matrix–matrix, and complex-valued matrix–matrix multiplication operations can all be realized simply by programming of the data arrangement in the input plane of a multiple-input joint-transform correlator. The proposed method benefits from the advantages of speed because of the real-time processing capability of the joint-transform correlator and of high accuracy because of the digital representation of the multiplied numbers. Computer-simulation results are provided in which the negative binary encoding method is used to encode matrix elements.

© 1999 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(110.6980) Imaging systems : Transforms

History
Original Manuscript: May 13, 1998
Revised Manuscript: August 12, 1998
Published: January 10, 1999

Citation
Shuqun Zhang and Mohammad A. Karim, "Real-time digital optical matrix multiplication with a joint-transform correlator," Appl. Opt. 38, 399-408 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-2-399


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. S. Weaver, J. W. Goodman, “Technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966). [CrossRef] [PubMed]
  2. F. T. S. Yu, X. J. Lu, “A programmable joint transform correlator,” Opt. Commun. 52, 10–16 (1984). [CrossRef]
  3. J. Wang, B. Javidi, “Multiobject detection using the binary joint transform correlator with different types of thresholding methods,” Opt. Eng. 33, 1793–1804 (1994). [CrossRef]
  4. M. Deutsch, J. Garcia, D. Mendlovic, “Multichannel single-output color pattern recognition by use of a joint-transform correlator,” Appl. Opt. 35, 6976–6982 (1996). [CrossRef] [PubMed]
  5. M. S. Alam, M. A. Karim, “Arithmetic processing with a joint-transform correlator,” Appl. Opt. 31, 4693–4699 (1992). [CrossRef] [PubMed]
  6. S. P. Kozaitis, M. A. Getbehead, “Multiple-input joint transform correlator for wavelet feature extraction,” Opt. Eng. 37, 1325–1331 (1998). [CrossRef]
  7. R. A. Hemz, J. O. Artman, S. H. Lee, “Matrix multiplication by optical methods,” Appl. Opt. 9, 2161–2168 (1970). [CrossRef]
  8. Q. W. Song, M. C. Lee, P. Talbot, L. Cheng, “Matrix–vector multiplication by using pinhole holograms,” Appl. Opt. 33, 800–805 (1994). [CrossRef]
  9. Y. Z. Liang, H.-K. Liu, “Optical matrix–matrix multiplication method demonstrated by the use of a multifocus hololens,” Opt. Lett. 9, 322–324 (1984). [CrossRef] [PubMed]
  10. W. T. Rhodes, P. S. Guilfoyle, “Acoustooptic algebraic processing architectures,” Proc. IEEE 72, 820–830 (1984). [CrossRef]
  11. H. Nakano, K. Hotate, “Optical system for real-time multiplication of the multiple matrix with a 2-D light source array,” Appl. Opt. 26, 917–923 (1987). [CrossRef] [PubMed]
  12. D. Psaltis, D. Casasent, D. Neft, M. Carlotto, “Accurate numerical computation by optical convolution,” in International Optical Computing Conference II, W. T. Rhodes, ed., Proc. SPIE232, 151–156 (1980).
  13. M. A. Karim, A. A. S. Awwal, Optical Computing: An Introduction (Wiley, New York, 1992).
  14. R. P. Bocker, K. Bromley, S. R. Clayton, “Electro-optical matrix multiplication using 2’s complement arithmetic for improved accuracy,” Appl. Opt. 22, 2019–2021 (1983). [CrossRef]
  15. C. Perlee, D. P. Casasent, “Negative base encoding in optical linear algebra processors,” Appl. Opt. 25, 168–169 (1986). [CrossRef] [PubMed]
  16. L. Liu, G. Li, Y. Yin, “Optical complex matrix–vector multiplication with negative binary inner products,” Opt. Lett. 19, 1759–1761 (1994). [CrossRef] [PubMed]
  17. G. Li, L. Liu, L. Shao, Z. Wang, “Negative binary arithmetic algorithms for digital parallel optical computation,” Opt. Lett. 19, 1337–1339 (1994). [CrossRef] [PubMed]
  18. D. S. Kalivas, “Real-time optical multiplication with accuracy,” Opt. Eng. 33, 3427–3430 (1994). [CrossRef]
  19. G. Li, L. Liu, C. Zhou, “Simplified optical complex multiplication using quarter-imaginary number representation,” Opt. Commun. 122, 16–22 (1995). [CrossRef]
  20. F. Cheng, P. Andres, F. T. S. Yu, “Removal of the intra-class associations in a joint power transform spectrum,” Opt. Commun. 99, 7–12 (1993). [CrossRef]
  21. C. Li, S. Yin, F. T. S. Yu, “Nonzero-order joint transform correlators,” Opt. Eng. 37, 58–65 (1998). [CrossRef]
  22. G. Lu, Z. Zhang, S. Wu, F. T. S. Yu, “Implementation of dc spectra-free joint transform correlator using phase-shifting techniques,” Appl. Opt. 36, 470–483 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited