OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 20 — Jul. 10, 1999
  • pp: 4281–4290

Genetic local search algorithm for optimization design of diffractive optical elements

Guangya Zhou, Yixin Chen, Zongguang Wang, and Hongwei Song  »View Author Affiliations


Applied Optics, Vol. 38, Issue 20, pp. 4281-4290 (1999)
http://dx.doi.org/10.1364/AO.38.004281


View Full Text Article

Enhanced HTML    Acrobat PDF (162 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a genetic local search algorithm (GLSA) for the optimization design of diffractive optical elements (DOE’s). This hybrid algorithm incorporates advantages of both genetic algorithm (GA) and local search techniques. It appears better able to locate the global minimum compared with a canonical GA. Sample cases investigated here include the optimization design of binary-phase Dammann gratings, continuous surface-relief grating array generators, and a uniform top-hat focal plane intensity profile generator. Two GLSA’s whose incorporated local search techniques are the hill-climbing method and the simulated annealing algorithm are investigated. Numerical experimental results demonstrate that the proposed algorithm is highly efficient and robust. DOE’s that have high diffraction efficiency and excellent uniformity can be achieved by use of the algorithm we propose.

© 1999 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1970) Diffraction and gratings : Diffractive optics
(100.5090) Image processing : Phase-only filters

History
Original Manuscript: August 20, 1998
Revised Manuscript: March 22, 1999
Published: July 10, 1999

Citation
Guangya Zhou, Yixin Chen, Zongguang Wang, and Hongwei Song, "Genetic local search algorithm for optimization design of diffractive optical elements," Appl. Opt. 38, 4281-4290 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-20-4281


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. V. Wong, G. J. Swanson, “Design and fabrication of a Gaussian fan-out optical interconnect,” Appl. Opt. 32, 2502–2511 (1993). [CrossRef] [PubMed]
  2. W. B. Veldkamp, J. R. Leger, G. J. Swanson, “Coherent summation of laser beams using binary phase gratings,” Opt. Lett. 11, 303–305 (1986). [CrossRef] [PubMed]
  3. X. Tan, B. Y. Gu, G. Z. Yang, B. Z. Dong, “Diffractive phase elements for beam shaping: a new design method,” Appl. Opt. 34, 1314–1320 (1995). [CrossRef] [PubMed]
  4. T. Stone, N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988). [CrossRef] [PubMed]
  5. J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158 (1995). [CrossRef]
  6. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  7. J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980). [CrossRef]
  8. F. Wyrowski, O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 54, 1481–1571 (1991). [CrossRef]
  9. J. Turunen, A. Vasara, J. Westerholm, “Kinoform phase relief synthesis: a stochastic method,” Opt. Eng. 28, 1162–1176 (1989). [CrossRef]
  10. B. K. Jennison, J. P. Allebach, D. W. Sweeney, “Iterative approaches to computer-generated holography,” Opt. Eng. 28, 629–637 (1989). [CrossRef]
  11. E. G. Johnson, A. D. Kathman, D. H. Hochmuth, A. Cook, D. R. Brown, B. Delaney, “Advantages of genetic algorithm optimization methods in diffractive optic design,” in Diffractive and Miniaturized Optics, S.-H. Lee, ed., Vol. CR49 of SPIE Critical Review Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 54–74.
  12. G. Yang, “Genetic algorithm to the optimal design of diffractive optical elements and its comparison with simulated annealing algorithm,” Acta Opt. Sin. 13, 577–584 (1993).
  13. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983). [CrossRef] [PubMed]
  14. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, “Equation of state calculations by fast computing machines,” J. Chem. Phys. 21, 1087–1092 (1953). [CrossRef]
  15. X. Qi, F. Palmieri, “Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space: Part I. Basic properties of selection and mutation,” IEEE Trans. Neural Netw. 5, 102–119 (1994). [CrossRef]
  16. Z. B. Xu, Y. Gao, “The characteristic analysis and prevention of premature convergence of genetic algorithms,” Science in China E26, 364–375 (1996) (in Chinese).
  17. N. N. Schraudolph, R. K. Belew, “Dynamic parameter encoding for genetic algorithms,” Mach. Learning 9, 9–21 (1992). [CrossRef]
  18. A. B. Djurišić, J. M. Elazar, A. D. Rakić, “Simulated-annealing-based genetic algorithm for modeling the optical constants of solids,” Appl. Opt. 36, 7097–7103 (1997). [CrossRef]
  19. A. M. S. Zalzala, P. J. Fleming, eds., Genetic Algorithms in Engineering Systems (Institution of Electrical Engineers, London, 1997), Chap. 1, pp. 10–12.
  20. J. Zhang, Z. Xu, Y. Leung, “Global annealing genetic algorithm and its convergence analysis,” Science in China E40, 414–424 (1997). [CrossRef]
  21. F. Wyrowski, “Upper bound of the diffraction efficiency of diffractive phase elements,” Opt. Lett. 16, 1915–1917 (1991). [CrossRef] [PubMed]
  22. U. Krackhardt, J. N. Mait, N. Streibl, “Upper bound on the diffraction efficiency of phase-only fanout elements,” Appl. Opt. 31, 27–37 (1992). [CrossRef] [PubMed]
  23. R. L. Morrison, S. L. Walker, T. J. Cloonan, “Beam array generation and holographic interconnections in a free-space optical switching network,” Appl. Opt. 32, 2512–2518 (1993). [CrossRef] [PubMed]
  24. H. Dammann, K. Görtler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971). [CrossRef]
  25. R. L. Morrison, “Symmetries that simplify the design of spot array phase gratings,” J. Opt. Soc. Am. A 9, 464–471 (1992). [CrossRef]
  26. P. Ehbets, H. P. Herzig, D. Prongué, M. T. Gale, “High-efficiency continuous surface-relief gratings for two-dimensional array generation,” Opt. Lett. 17, 908–910 (1992). [CrossRef] [PubMed]
  27. D. Prongué, H. P. Herzig, R. D. Dändliker, M. T. Gale, “Optimized kinoform structures for highly efficient fan-out elements,” Appl. Opt. 31, 5706–5711 (1992). [CrossRef] [PubMed]
  28. E. Sidick, A. Knoesen, J. N. Mait, “Design and rigorous analysis of high-efficiency array generators,” Appl. Opt. 32, 2599–2605 (1993). [CrossRef] [PubMed]
  29. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, C. Yamanaka, “Random phasing of lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984). [CrossRef]
  30. S. N. Dixit, I. M. Thomas, B. W. Woods, A. J. Morgan, M. A. Henesian, P. J. Wegner, H. T. Powell, “Random phase plates for beam smoothing on the Nova laser,” Appl. Opt. 32, 2543–2554 (1993). [CrossRef] [PubMed]
  31. X. Deng, X. Liang, Z. Chen, W. Yu, R. Ma, “Uniform illumination of large targets using a lens arrays,” Appl. Opt. 25, 377–381 (1986). [CrossRef] [PubMed]
  32. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 5, pp. 85–90.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited