OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 20 — Jul. 10, 1999
  • pp: 4296–4305

Filter implementation technique for multicriteria characterization of coding domains in the joint transform correlator

Laurent Bigué and Pierre Ambs  »View Author Affiliations

Applied Optics, Vol. 38, Issue 20, pp. 4296-4305 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (305 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An improved method for implementing correlation filters in the joint transform correlator architecture is proposed. We derived the method from computer-generated holography techniques. It allows us to use any correlation filters, especially ones that provide an optimal trade-off between noise robustness, peak sharpness, and optical efficiency, with any spatial light modulator (SLM). This method also allows for an objective comparison of the performance of the coding domains of various SLM’s.

© 1999 Optical Society of America

OCIS Codes
(070.4550) Fourier optics and signal processing : Correlators
(070.5010) Fourier optics and signal processing : Pattern recognition
(230.6120) Optical devices : Spatial light modulators

Original Manuscript: March 27, 1998
Revised Manuscript: March 15, 1999
Published: July 10, 1999

Laurent Bigué and Pierre Ambs, "Filter implementation technique for multicriteria characterization of coding domains in the joint transform correlator," Appl. Opt. 38, 4296-4305 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Maréchal, P. Croce, “Un filtre de fréquences spatiales pour l’amélioration du contraste des images optiques,” C. R. Acad. Sci. 237, 607–609 (1953).
  2. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964). [CrossRef]
  3. C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966). [CrossRef] [PubMed]
  4. H. J. Caulfield, W. T. Maloney, “Improved discrimination in optical character recognition,” Appl. Opt. 8, 2354–2356 (1969). [CrossRef] [PubMed]
  5. Y. N. Hsu, H. H. Arsenault, “Optical pattern recognition using circular harmonic expansion,” Appl. Opt. 21, 4016–4019 (1982). [CrossRef] [PubMed]
  6. Ph. Réfrégier, “Filter design for optical pattern recognition: multicriteria optimization approach,” Opt. Lett. 15, 854–856 (1990). [CrossRef] [PubMed]
  7. B. V. K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31, 4773–4801 (1992). [CrossRef]
  8. B. V. K. Vijaya Kumar, R. D. Juday, K. P. Rajan, “Saturated filters,” J. Opt. Soc. Am. A 9, 405–412 (1992). [CrossRef]
  9. R. D. Juday, “Optimal realizable filters and the minimum Euclidean distance principle,” Appl. Opt. 32, 5100–5111 (1993). [CrossRef] [PubMed]
  10. V. Laude, Ph. Réfrégier, “Multicriteria characterization of coding domains with optimal Fourier SLM filters,” Appl. Opt. 33, 4465–4471 (1994). [CrossRef] [PubMed]
  11. B. V. K. Vijaya Kumar, D. W. Carlson, A. Mahalanobis, “Optimal trade-off synthetic discriminant function filters for arbitrary devices,” Opt. Lett. 19, 1556–1558 (1994). [CrossRef]
  12. J. L. Horner, P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984). [CrossRef] [PubMed]
  13. L. P. Yaroslavsky, “Is the phase-only filter and its modifications optimal in terms of the discrimination capability in pattern recognition?” Appl. Opt. 31, 1677–1679 (1992). [CrossRef] [PubMed]
  14. Ph. Réfrégier, “Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency,” Opt. Lett. 16, 829–831 (1991). [CrossRef] [PubMed]
  15. J. L. de Bougrenet de la Tocnaye, L. Dupont, “Complex amplitude modulation by use of liquid-crystal spatial light modulators,” Appl. Opt. 36, 1730–1741 (1997). [CrossRef]
  16. U. Mahlab, J. Shamir, “Iterative optimization algorithms for filter generation in optical correlators: a comparison,” Appl. Opt. 31, 1117–1125 (1992). [CrossRef] [PubMed]
  17. M. G. Roe, K. L. Schehrer, R. Dobson, L. Schirber, “Distortion-invariant optical pattern recognition using composite binary filters,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 203–213 (1993). [CrossRef]
  18. Y. Pétillot, G. Keryer, J. L. de Bougrenet de la Tocnaye, “Real-time distortion-invariant joint transform correlator using ferroelectric liquid crystal spatial light modulators,” in Euro-American Workshop on Optical Pattern Recognition, B. Javidi, Ph. Réfrégier, eds. (SPIE Optical Engineering Press, Bellingham, Wash., 1994), pp. 267–274.
  19. B. V. K. Vijaya Kumar, D. W. Carlson, A. Mahalanobis, “Efficient determination of the optimum gain and angle in the design of optical correlation filters,” Opt. Eng. 37, 132–137 (1998). [CrossRef]
  20. J. J. Burch, “A computer algorithm for the synthesis of spatial frequency filters,” Proc. IEEE 55, 599–601 (1967). [CrossRef]
  21. F. Wyrowski, “Iterative quantization of digital amplitude holograms,” Appl. Opt. 28, 3865–3870 (1989). [CrossRef]
  22. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  23. L. M. Bregman, “Finding the common point of convex sets by the method of successive projections,” Dokl. Akad. Nauk SSSR 162, 487–490 (1965).
  24. H. Stark, W. C. Catino, J. L. LoCicero, “Design of phase gratings by generalized projections,” J. Opt. Soc. Am. A 8, 566–571 (1991). [CrossRef]
  25. H. Stark, M. I. Sezan, “Image processing using projection methods,” in Real-Time Optical Information Processing, B. Javidi, J. L. Horner, eds. (Academic, San Diego, Calif., 1994), pp. 185–232.
  26. E. Zhang, S. Noehte, C. H. Dietrich, R. Männer, “Gradual and random binarization of gray-scale holograms,” Appl. Opt. 34, 5987–5995 (1995). [CrossRef] [PubMed]
  27. M. A. Seldowitz, J. P. Allebach, D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987). [CrossRef] [PubMed]
  28. J. P. Allebach, D. W. Sweeney, “Iterative approaches to computer generated holography,” in Computer-Generated Holography II, S. H. Lee, ed., Proc. SPIE884, 2–9 (1988). [CrossRef]
  29. B. K. Jennison, J. P. Allebach, D. W. Sweeney, “Iterative approaches to computer-generated holography,” Opt. Eng. 28, 629–637 (1989). [CrossRef]
  30. L. Legeard, Ph. Réfrégier, P. Ambs, “Multicriteria optimality for iterative encoding of computer generated holograms,” Appl. Opt. 36, 7444–7449 (1997). [CrossRef]
  31. I. Juvells, A. Carnicer, S. Vallmitjana, J. Campos, “Implementation of real filters in a joint transform correlator using a positive-only display,” J. Opt. 25, 33–40 (1994). [CrossRef]
  32. M. Taniguchi, K. Matsuoka, Y. Ichioka, “Computer-generated multiple-object discriminant correlation filters: design by simulated annealing,” Appl. Opt. 34, 1379–1385 (1995). [CrossRef] [PubMed]
  33. W.-H. Lee, “Sampled Fourier transform hologram generated by computer,” Appl. Opt. 9, 639–643 (1970). [CrossRef] [PubMed]
  34. S. Mazé, P. Réfrégier, “Optical correlation: influence of the coding of the input image,” Appl. Opt. 33, 6788–6796 (1994). [CrossRef] [PubMed]
  35. S.-T. Wu, “Nematic liquid crystal,” in Spatial Light Modulator Technology: Materials, Devices, and Applications, U. Efron, ed. (Marcel Dekker, New York, 1995), pp. 1–31.
  36. S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, “Programmable multiple-level phase modulation using ferroelectric liquid crystal spatial light modulators,” Appl. Opt. 34, 6652–6665 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited