OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 20 — Jul. 10, 1999
  • pp: 4374–4386

Channel modeling and estimation for intrapage equalization in pixel-matched volume holographic data storage

Venkatesh Vadde and B. V. K. Vijaya Kumar  »View Author Affiliations

Applied Optics, Vol. 38, Issue 20, pp. 4374-4386 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (215 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present two different channel models (the magnitude model and the intensity model) for a pixel-matched volume holographic data storage system that employs the 4-focal-length architecture. First, a framework to describe the channel models is developed. We evaluate the linearity of the channel models by comparing data values obtained from diffraction-limited interference with data values predicted by the channel models. The models are evaluated for linearity and equalization gain under different storage and read-back conditions, such as fill factors, apertures, and contrast ratios. Bit error rate results obtained by use of linear equalization methods in conjunction with the channel models developed are also presented. Our results suggest that the magnitude model leads to better performance when the fill factors are small, whereas the intensity model appears to be more appropriate for the high-fill-factor cases. The magnitude model, when suitable, appears to provide a storage density improvement of as great as 65%, whereas the intensity model seems capable of providing as much as 15% density gain through deconvolution. The optimum aperture for storage seems to be close to the Nyquist aperture.

© 1999 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(100.1830) Image processing : Deconvolution
(100.2000) Image processing : Digital image processing
(210.2860) Optical data storage : Holographic and volume memories

Original Manuscript: August 25, 1998
Revised Manuscript: February 8, 1999
Published: July 10, 1999

Venkatesh Vadde and B. V. K. Vijaya Kumar, "Channel modeling and estimation for intrapage equalization in pixel-matched volume holographic data storage," Appl. Opt. 38, 4374-4386 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611–S661 (1993). [CrossRef]
  2. V. Vadde, B. V. K. Vijaya Kumar, “Channel estimation and intra-page equalization for digital volume holographic data storage,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, Z. Kwiecien, eds., Proc. SPIE3109, 250–255 (1997).
  3. C. Gu, G. Sornat, J. Hong, “BER statistics of complex amplitude noise in holographic data storage,” Opt. Lett. 21, 1070–1072 (1996). [CrossRef] [PubMed]
  4. C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A 9, 1978–1983 (1992). [CrossRef]
  5. X. Yi, P. Yeh, C. Gu, “Statistical analysis of cross-talk noise and storage capacity in volume holographic memory,” Opt. Lett. 19, 1580–1582 (1994). [CrossRef] [PubMed]
  6. K. Curtis, D. Psaltis, “Cross-talk for angle and wavelength multiplexed image plane holograms,” Opt. Lett. 19, 1774–1776 (1994). [CrossRef] [PubMed]
  7. D. Brady, D. Psaltis, “Control of volume holograms,” J. Opt. Soc. Am. A 9, 1167–1182 (1992). [CrossRef]
  8. V. Vadde, B. V. K. Vijaya Kumar, G. W. Burr, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, “A figure-of-merit for the optical aperture used in digital volume holographic data storage,” in Optical Data Storage ’98, S. Kubota, T. D. Milster, P. J. Wehrenberg, eds., Proc. SPIE3401, 194–200 (1998). [CrossRef]
  9. C. D. Mee, E. D. Daniel, Magnetic Storage Handbook (McGraw-Hill, New York, 1996).
  10. J. F. Heanue, K. Gurkan, L. Hesselink, “Signal detection for page-access optical memories with intersymbol interference,” Appl. Opt. 35, 2431–2438 (1996). [CrossRef] [PubMed]
  11. M. A. Neifeld, K. M. Chugg, B. M. King, “Parallel data detection in page-oriented optical memory,” Opt. Lett. 21, 1481–1483 (1996). [CrossRef] [PubMed]
  12. C. Miller, B. Hunt, M. A. Neifeld, W. Marcellin, “Binary image reconstruction via 2-D Viterbi search,” in Proceedings of the International Conference on Image Processing (Institute of Electrical and Electronics Engineers, New York, 1997). [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  14. J. D. Gaskill, Linear Systems, Fourier Transforms and Optics (Wiley, New York, 1978).
  15. M.-P. Bernal, G. W. Burr, H. Coufal, M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377–5385 (1998). [CrossRef]
  16. C. Gu, F. Dai, J. Hong, “Statistics of both optical and electronic noise in digital volume holographic data storage,” Electron. Lett. 32, 1400–1402 (1996). [CrossRef]
  17. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12, 2432–2439 (1995). [CrossRef]
  18. G. P. Agrawal, Fiber Optic Communication Systems (Wiley, New York, 1992).
  19. J. Hong, I. McMichael, J. Ma, “Influence of phase masks on cross talk in holographic memory,” Opt. Lett. 21, 1694–1696 (1996). [CrossRef] [PubMed]
  20. M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, M. Quintanilla, “Effects of multilevel phase masks on interpixel cross talk in digital holographic storage,” Appl. Opt. 36, 3107–3115 (1997). [CrossRef] [PubMed]
  21. U. Efron, Spatial Light Modulator Technology (Marcel Dekker, New York, 1994).
  22. J. A. Neff, R. A. Athale, S. H. Lee, “Two dimensional spatial light modulators: a tutorial,” Proc. IEEE 78, 826–855 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited