OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 21 — Jul. 20, 1999
  • pp: 4425–4432

Comparison of various linear depolarization parameters measured by lidar

Francesco Cairo, Guido Di Donfrancesco, Alberto Adriani, Lucio Pulvirenti, and Federico Fierli  »View Author Affiliations

Applied Optics, Vol. 38, Issue 21, pp. 4425-4432 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Different definitions for estimating the degree of changes in signal polarization measured by lidar measurements are used both to detect the presence of nonspherical aerosol particles and to estimate their shape and density. Our aim is to provide a tool for calculation and interpretation of changes in polarization that are due to aerosol backscatter measured by the lidar technique. An overview of several techniques used to calculate linear depolarization from two-channel lidar measurements is given. Advantages and disadvantages of each method are analyzed when we apply them on a lidar vertical profile. Systematic errors are also discussed. First, an overview of different estimations of polarizability of atmospheric molecules is given. The presence of signal with orthogonal polarization in each channel (cross talk) is a source of error in depolarization estimation. It is calculated at various degrees of contamination, and the total uncertainty on depolarization definition is retrieved.

© 1999 Optical Society of America

OCIS Codes
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering

Original Manuscript: May 12, 1998
Revised Manuscript: January 4, 1999
Published: July 20, 1999

Francesco Cairo, Guido Di Donfrancesco, Alberto Adriani, Lucio Pulvirenti, and Federico Fierli, "Comparison of various linear depolarization parameters measured by lidar," Appl. Opt. 38, 4425-4432 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1988). [CrossRef]
  2. A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535 (1981). [CrossRef] [PubMed]
  3. O. Toon, E. V. Browell, S. Kinne, J. Jordan, “Analysis of lidar observations of polar stratospheric clouds,” Geophys. Res. Lett. 17, 393–396 (1990). [CrossRef]
  4. A. I. Carswell, “Lidar measurements of the atmosphere,” Can. J. Phys. 61, 378–395 (1983). [CrossRef]
  5. W. Steinbrecht, H. Jager, A. Adriani, G. Di Donfrancesco, J. Barnes, G. Beyerle, R. Neuber, C. David, S. Godin, D. Donovan, A. I. Carswell, M. Gross, T. McGee, F. Masci, A. D’Altorio, V. Rizi, G. Visconti, I. S. McDermid, G. Megie, B. Mielke, B. Stein, C. Wedekind, T. Nagai, O. Uchino, H. Nakane, M. Osborn, D. Winker, “NDSC intercomparison of stratospheric aerosol processing algorithms,” in Advances in Atmospheric Remote Sensing with Lidar: Selected Papers of the 18th International Laser Radar Conference (ILRC), A. Ansmann, R. Neuber, P. Rairoux, U. Wandiner, eds. (Springer-Verlag, New York, 1996), pp. 501–504.
  6. S. R. Pal, A. I. Carswell, “Polarization properties of lidar backscattering from clouds,” Appl. Opt. 12, 1530–1535 (1973). [CrossRef] [PubMed]
  7. H. J. Schafer, P. Scheuch, M. Langer, K. H. Fricke, U. von Zahn, B. Knudsen, “Lidar observations of PSC at Andoya, Norway, in January 1992,” Geophys. Res. Lett. 21, 1307–1310 (1994). [CrossRef]
  8. E. U. Browell, F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Bigbon, O. W. Toon, M. R. Schoeberl, A. F. Tuck, “Airborne lidar observation in the wintertime arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990). [CrossRef]
  9. T. Shibata, Y. Iwasaka, M. Fujiwara, M. Hayashi, M. Nagatani, K. Shiraishi, H. Adachi, T. Sakai, K. Susumu, Y. Nakura, “PSC observed by lidar over Spitsbergen in the winter 1994/1995: liquid particles and vertical ‘sandwich’ structure,” J. Geophys. Res. 102, 10,829–10,840 (1997). [CrossRef]
  10. A. D’Altorio, F. Masci, V. Rizi, G. Visconti, E. Boschi, “Continuous lidar measurements of stratospheric aerosols and ozone after the Pinatubo eruption. Part 1: DIAL ozone retrieval in presence of stratospheric aerosol layers,” Geophys. Res. Lett. 20, 2865–2868 (1993). [CrossRef]
  11. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef] [PubMed]
  12. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 653–653 (1984). [CrossRef]
  13. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratio,” Appl. Opt. 24, 1639–1643 (1985). [CrossRef]
  14. G. P. Gobbi, “Lidar estimation of stratospheric aerosol properties: surface, volume and extinction to backscattering ratio,” J. Geophys. Res. 100, 11,219–11,235 (1995). [CrossRef]
  15. A. Adriani, F. Cairo, S. Mandolini, G. Di Donfrancesco, T. Deshler, B. Nardi, “A new joint balloon-borne experiment to study polar stratospheric clouds: laser backscatter sonde and optical particle counter,” in Atmospheric Ozone, Proceedings of the 18th Quadriennal Ozone Symposium 1996 and Tropospheric Ozone Workshop, R. D. Bojkov, G. Visconti, eds. (Parco Scientifico e Tecnologico d’Abruzzo, L’Aquila, Italy, 1996), pp. 879–882.
  16. F. Fierli, F. Cairo, L. Pulvirenti, B. Nardi, S. Mandolini, G. Di Donfrancesco, A. Adriani, A. Hauchechorne, F. Goutail, A. Sarkissian, T. Deshler, V. Rizi, G. Redaelli, G. Visconti, B. Knudsen, G. Hansen, U. P. Hoppe, “January 23 1996 PSC above Andoya: different aerosol characteristics retrieval from backscatter data, comparison with optical particle counter measurements and interpretation by Lagrangian box modeling,” in Polar Stratospheric Ozone 1997, Proceedings of the Fourth European Symposium, Publication 18032, N. R. P. Harris, I. Kilbane-Dawe, G. T. Amanatidis, eds. (Office for Official Publications of the European Communities, Firenze, Italy, 1998), pp. 191–193.
  17. P. B. Russell, T. J. Swissler, M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979). [PubMed]
  18. N. J. Bridge, A. D. Buckingham, “The polarization of laser light scattered by gases,” Proc. R. Soc. London Ser. A 295, 334–349 (1960). [CrossRef]
  19. D. R. Bates, “Rayleigh scattering by air,” Planet. Space Sci. 32, 785–7901 (1984). [CrossRef]
  20. For nomenclature about molecular scattering refer to A. T. Young, “Rayleigh scattering,” Phys. Today 35(1), 42–48 (1982).
  21. See V. Freudenthaler, F. Homburd, H. Jager, “Optical parameters of contrails from lidar measurements: linear depolarization,” Geophys. Res. Lett. 23, 3715–3718 (1996). [CrossRef]
  22. D. Nedeljkovic, A. Hauchechorne, M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993). [CrossRef]
  23. J. M. Alvarez, Langley Research Center, Mail Stop 417, Hampton, Va. 23681-0001; ; e-mail address j.m.alvarez@larc.nasa.gov (personal communication).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited