OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 21 — Jul. 20, 1999
  • pp: 4443–4460

Solar actinic flux spectroradiometry: a technique for measuring photolysis frequencies in the atmosphere

Andreas Hofzumahaus, Alexander Kraus, and Martin Müller  »View Author Affiliations


Applied Optics, Vol. 38, Issue 21, pp. 4443-4460 (1999)
http://dx.doi.org/10.1364/AO.38.004443


View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A spectroradiometer has been developed for direct measurement of the solar actinic UV flux (scalar intensity) and determination of photolysis frequencies in the atmosphere. The instrument is based on a scanning double monochromator with an entrance optic that exhibits an isotropic angular response over a solid angle of 2π sr. Actinic flux spectra are measured at a resolution of 1 nm across a range of 280–420 nm, which is relevant for most tropospheric photolysis processes. The photolysis frequencies are derived from the measured radiation spectra by use of published absorption cross sections and quantum yields. The advantage of this technique compared with the traditional chemical actinometry is its versatility. It is possible to determine the photolysis frequency for any photochemical reaction of interest provided that the respective molecular photodissociation parameters are known and the absorption cross section falls within a wavelength range that is accessible by the spectroradiometer. The instrument and the calibration procedures are described in detail, and problems specific to measurement of the actinic radiation are discussed. An error analysis is presented together with a discussion of the spectral requirements of the instrument for accurate measurements of important tropospheric photolysis frequencies (JO1 D, JNO2 , JHCHO). An example of measurements from previous atmospheric chemistry field campaigns are presented and discussed.

© 1999 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation

History
Original Manuscript: October 12, 1998
Revised Manuscript: March 15, 1999
Published: July 20, 1999

Citation
Andreas Hofzumahaus, Alexander Kraus, and Martin Müller, "Solar actinic flux spectroradiometry: a technique for measuring photolysis frequencies in the atmosphere," Appl. Opt. 38, 4443-4460 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-21-4443

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited