OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 21 — Jul. 20, 1999
  • pp: 4443–4460

Solar actinic flux spectroradiometry: a technique for measuring photolysis frequencies in the atmosphere

Andreas Hofzumahaus, Alexander Kraus, and Martin Müller  »View Author Affiliations


Applied Optics, Vol. 38, Issue 21, pp. 4443-4460 (1999)
http://dx.doi.org/10.1364/AO.38.004443


View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A spectroradiometer has been developed for direct measurement of the solar actinic UV flux (scalar intensity) and determination of photolysis frequencies in the atmosphere. The instrument is based on a scanning double monochromator with an entrance optic that exhibits an isotropic angular response over a solid angle of 2π sr. Actinic flux spectra are measured at a resolution of 1 nm across a range of 280–420 nm, which is relevant for most tropospheric photolysis processes. The photolysis frequencies are derived from the measured radiation spectra by use of published absorption cross sections and quantum yields. The advantage of this technique compared with the traditional chemical actinometry is its versatility. It is possible to determine the photolysis frequency for any photochemical reaction of interest provided that the respective molecular photodissociation parameters are known and the absorption cross section falls within a wavelength range that is accessible by the spectroradiometer. The instrument and the calibration procedures are described in detail, and problems specific to measurement of the actinic radiation are discussed. An error analysis is presented together with a discussion of the spectral requirements of the instrument for accurate measurements of important tropospheric photolysis frequencies (JO1 D, JNO2 , JHCHO). An example of measurements from previous atmospheric chemistry field campaigns are presented and discussed.

© 1999 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation

History
Original Manuscript: October 12, 1998
Revised Manuscript: March 15, 1999
Published: July 20, 1999

Citation
Andreas Hofzumahaus, Alexander Kraus, and Martin Müller, "Solar actinic flux spectroradiometry: a technique for measuring photolysis frequencies in the atmosphere," Appl. Opt. 38, 4443-4460 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-21-4443


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998).
  2. S. Madronich, “Photodissociation in the atmosphere, 1. Actinic flux and the effects of ground reflection and clouds,” J. Geophys. Res. 92, 9740–9752 (1987). [CrossRef]
  3. J. Lenoble, Atmospheric Radiative Transfer (A. Deepak, Hampton, Va., 1993).
  4. A. Kraus, A. Hofzumahaus, “Field measurements of atmospheric photolysis frequencies for O3, NO2, HCHO, H2O2 and HONO by UV spectroradiometry,” J. Atmos. Chem. 31, 161–180 (1998). [CrossRef]
  5. F. Bahe, U. Schurath, “Measurement of O(1D) formation by ozone photolysis in the troposphere,” Pageoph 116, 537–544 (1978). [CrossRef]
  6. F. C. Bahe, W. N. Marx, U. Schurath, E. P. Röth, “Determination of the absolute photolysis rate of ozone by sunlight, O3 + hν → O(1D) + O2(1Δg), at ground level,” Atmos. Environ. 13, 1515–1522 (1979). [CrossRef]
  7. R. R. Dickerson, D. H. Stedman, W. L. Chameides, P. J. Crutzen, J. Fishman, “Actinometric measurements and theoretical calculations of j(O3), the rate of photolysis of ozone to O(1D),” Geophys. Res. Lett. 6, 833–836 (1979). [CrossRef]
  8. R. R. Dickerson, D. H. Stedman, A. C. Delany, “Direct measurements of ozone and nitrogen dioxide photolysis rates in the troposphere,” J. Geophys. Res. 87, 4933–4946 (1982). [CrossRef]
  9. T. E. Blackburn, S. T. Bairai, D. H. Stedman, “Solar photolysis of ozone to singlet D oxygen atoms,” J. Geophys. Res. 97, 10,109–10,117 (1992). [CrossRef]
  10. S. T. Bairai, D. H. Stedman, “Actinometric measurement of j〈O3-O(1D)〉 using a luminol detector,” Geophys. Res. Lett. 19, 2047–2050 (1992). [CrossRef]
  11. M. Müller, A. Kraus, A. Hofzumahaus, “O3 → O(1D) photolysis frequencies determined from spectroradiometric measurements of solar actinic UV radiation: comparison with chemical actinometer measurements,” Geophys. Res. Lett. 22, 679–682 (1995). [CrossRef]
  12. R. E. Shetter, C. A. Cantrell, K. O. Lantz, S. J. Flocke, J. J. Orlando, G. S. Tyndall, T. M. Gilpin, C. A. Fischer, S. Madronich, J. G. Calvert, W. Junkermann, “Actinometric and radiometric measurement and modeling of the photolysis rate coefficient of ozone to O(1D) during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 10,631–10,642 (1996).
  13. D. H. Stedman, W. Chameides, J. O. Jackson, “Comparison of experimental and computed values of j(NO2),” Geophys. Res. Lett. 2, 22–25 (1975). [CrossRef]
  14. L. Zafonte, P. L. Rieger, J. R. Holmes, “Nitrogen dioxide photolysis in the Los Angeles atmosphere,” Environ. Sci. Technol. 11, 483–487 (1977). [CrossRef]
  15. F. C. Bahe, U. Schurath, K. H. Becker, “The frequency of NO2 photolysis at ground level as recorded by a continuous actinometer,” Atmos. Environ. 14, 711–718 (1980). [CrossRef]
  16. S. Madronich, D. R. Hastie, B. A. Ridley, H. I. Schiff, “Measurement of the photodissociation coefficient of NO2 in the atmosphere: I. Method and surface measurements,” J. Atmos. Chem. 1, 3–25 (1983). [CrossRef]
  17. D. D. Parrish, P. C. Murphy, D. L. Albritton, F. C. Fehsenfeld, “The measurement of the photodissociation rate of NO2 in the atmosphere,” Atmos. Environ. 17, 1365–1379 (1983). [CrossRef]
  18. R. E. Shetter, A. H. McDaniel, C. A. Cantrell, S. Madronich, J. G. Calvert, “Actinometer and Eppley radiometer measurements of the NO2 photolysis rate coefficient during the Mauna Loa Observatory Photochemistry Experiment,” J. Geophys. Res. 97, 10,349–10,359 (1992). [CrossRef]
  19. P. Kelley, R. R. Russel, W. T. Luke, G. L. Kok, “Rate of NO2 photolysis from the surface to 7.6-km altitude in clear sky and clouds,” Geophys. Res. Lett. 22, 2621–2624 (1995). [CrossRef]
  20. M. Schultz, N. Houben, D. Mihelcic, H.-W. Pätz, A. Volz-Thomas, “A chemical actinometer for the calibration of photoelectric detectors for the measurement of jNO2 (in German),” Vol. JUEL 3135 of (Forschungszentrum Jülich GmbH, Jülich, 1995).
  21. K. O. Lantz, R. E. Shetter, C. A. Cantrell, S. J. Flocke, J. G. Calvert, S. Madronich, “Theoretical, actinometric, and radiometric determinations of the photolysis rate coefficient of NO2 during the Mauna Loa Observatory Photochemistry Experiment 2,” J. Geophys. Res. 101, 14,613–14,630 (1996). [CrossRef]
  22. W. Junkermann, U. Platt, A. Volz-Thomas, “A photoelectric detector for the measurement of photolysis frequencies of ozone and other atmospheric molecules,” J. Atmos. Chem. 8, 203–227 (1989). [CrossRef]
  23. A. Hofzumahaus, T. Brauers, U. Platt, J. Callies, “Latitudinal variation of measured O3 photolysis frequencies J(O1D) and primary OH production rates over the Atlantic Ocean between 50 °N and 30 °S,” J. Atmos. Chem. 15, 283–298 (1992). [CrossRef]
  24. T. Brauers, A. Hofzumahaus, “Latitudinal variation of measured NO2 photolysis frequencies over the Atlantic Ocean between 50 °N and 30 °S,” J. Atmos. Chem. 15, 269–282 (1992). [CrossRef]
  25. W. Junkermann, “Measurements of the J(O1D) actinic flux within and above stratiform clouds and above snow surfaces,” Geophys. Res. Lett. 21, 793–796 (1994). [CrossRef]
  26. M. Müller, “Messung der aktinischen ultravioletten Strahlung und der Ozon-Photolysefrequenz in der Atmosphäre mittels Filterradiometrie und Spektralradiometrie,” Ph.D. dissertation (University of Bonn, Bonn, Germany, 1994).
  27. A. Volz-Thomas, A. Lerner, H.-W. Pätz, M. Schultz, D. S. McKenna, R. Schmitt, S. Madronich, E. P. Röth, “Airborne measurements of the photolysis frequency of NO2,” J. Geophys. Res. 101, 18,613–18,627 (1996). [CrossRef]
  28. S. Madronich, “Intercomparison of NO2 photodissociation and UV radiometer measurements,” Atmos. Environ. 21, 569–578 (1987). [CrossRef]
  29. M. VanWeele, J. V.-G. de Arellano, F. Kuik, “Combined measurements of UV-A actinic flux, UV-A irradiance and global radiation in relation to photodissociation rates,” Tellus Ser. B 47, 353–364 (1995). [CrossRef]
  30. K. L. Demerjian, K. L. Schere, J. T. Peterson, “Theoretical estimates of actinic (spherically integrated) flux and photolytic rate constants of atmospheric species in the lower troposphere,” in Advances in Environmental Science and Technology, Vol. 10 of NATO ASI Series, J. J. N. Pitts, R. L. Metcalf, D. Grosjean, eds. (Wiley, New York, 1980), pp. 369–459.
  31. J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, “Tropospheric chemistry: a global perspective,” J. Geophys. Res. 86, 7210–7254 (1981). [CrossRef]
  32. U. Feister, “Measurements of chemically and biologically effective radiation reaching the ground,” J. Atmos. Chem. 19, 289–315 (1994). [CrossRef]
  33. C. T. McElroy, C. Midwinter, D. V. Barton, R. B. Hall, “A comparison of J values from the composition and photodissociative flux measurement with model calculations,” Geophys. Res. Lett. 22, 1365–1368 (1995). [CrossRef]
  34. H. Cotte, C. Devaux, P. Carlier, “Transformation of irradiance measurements into spectral actinic flux for photolysis rates measurements,” J. Atmos. Chem. 26, 1–28 (1997). [CrossRef]
  35. A. Ruggaber, R. Forkel, R. Dlugi, “Spectral actinic flux and its ratio to spectral irradiance by radiation transfer calculations,” J. Geophys. Res. 98, 1151–1162 (1993). [CrossRef]
  36. A. Kylling, Norwegian Institute for Air Research (NILU), Kjeller, Norway (personal communication, 1997).
  37. M. Blumthaler, J. Gröbner, M. Huber, W. Ambach, “Measuring spectral and spatial variations of UVA and UVB sky radiance,” Geophys. Res. Lett. 23, 547–550 (1996). [CrossRef]
  38. H. Levy, “Photochemistry of the lower troposphere,” Planet. Space Sci. 20, 919–935 (1972). [CrossRef]
  39. “Setting standards for European ultraviolet spectroradiometers,” Vol. EUR16153 of , B. G. Gardiner, P. J. Kirsch, eds. (European Commission, Brussels, 1995).
  40. W. Budde, Physical Detectors of Optical Radiation, Vol. 4 of Optical Radiation Measurements (Academic, Orlando, Fla., 1983).
  41. K. G. Lindh, H. Buchberg, K. W. Wilson, “Omnidirectional ultraviolet radiometer,” Sol. Energy 8, 112–116 (1964). [CrossRef]
  42. J. S. Nader, N. White, “Volumetric measurement of ultraviolet energy in an urban atmosphere,” Environ. Sci. Technol. 3, 848–854 (1969). [CrossRef]
  43. J. C. H. VanderHage, W. Boot, H. vanDop, P. G. Duynkerke, J. V.-G. de Arellano, “A photoelectric detector suspended under a balloon for actinic flux measurements,” J. Atmos. Ocean Technol. 11, 674–679 (1994). [CrossRef]
  44. E. P. Röth, Universität-Gesamthochschule Essen, Essen, Germany (personal communication, 1994).
  45. M. E. VanHoosier, Naval Research Laboratory (NRL), Washington, D.C. (personal communication, 1997) (data available at http://www.solar.nrl.navy.mil/susim_atlas.html ).
  46. R. L. McKenzie, P. V. Johnston, M. Kotkamp, A. Bittar, J. D. Hamlin, “Solar ultraviolet spectroradiometry in New Zealand: instrumentation and sample results from 1990,” Appl. Opt. 31, 6501–6509 (1992). [CrossRef] [PubMed]
  47. H. Slaper, H. A. J. M. Reinen, M. Blumenthaler, M. Huber, F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995). [CrossRef]
  48. B. Mayer, Messung und Modellierung der spektralen UV Bestrahlungsstärke in Garmisch-Partenkirchen, Vol. 45–97 of Schriftenreihe des Fraunhofer-Instituts für Atmosphärische Umweltforschung (Wissenschafts-Verlag Maraun, Frankfurt, 1997).
  49. R. L. McKenzie, W. A. Matthews, P. V. Johnston, “The relationship between erythemal UV and ozone, derived from spectral irradiance measurements,” Geophys. Res. Lett. 18, 2269–2272 (1991). [CrossRef]
  50. D. Lubin, G. Mitchell, J. E. Frederick, A. D. Alberts, C. R. Booth, T. Lucas, D. Neuschuler, “A contribution towards understanding the biospherical significance of Antarctic ozone depletion,” J. Geophys. Res. 97, 7817–7828 (1992). [CrossRef]
  51. G. Seckmeyer, G. Bernhard, B. Mayer, R. Erb, “High-accuracy spectroradiometry of solar ultraviolet radiation,” Metrologia 32, 697–700 (1995). [CrossRef]
  52. A. F. Bais, C. S. Zerefos, C. T. McElroy, “Solar UV-B measurements with the double- and single-monochromator Brewer ozone spectrophotometers,” Geophys. Res. Lett. 23, 833–836 (1996). [CrossRef]
  53. D. Daumont, J. B. J. Charbonnier, J. Malicet, “Ozone UV spectroscopy I: Absorption cross sections at room temperature,” J. Atmos. Chem. 15, 145–155 (1992). [CrossRef]
  54. M. F. Merienne, A. Jenouvrier, B. Coquart, “The NO2 absorption spectrum: 1. Absorption cross sections at ambient temperature in the 300–500-nm region,” J. Atmos. Chem. 20, 281–297 (1995). [CrossRef]
  55. C. A. Cantrell, J. A. Davidson, A. H. McDaniel, R. E. Shetter, J. G. Calvert, “Temperature-dependent formaldehyde cross section in the near-ultraviolet spectral region,” J. Phys. Chem. 94, 3902–3908 (1990). [CrossRef]
  56. W. B. DeMore, S. P. Sander, C. J. Howard, A. R. Ravishankara, D. M. Golden, C. E. Kolb, R. F. Hampson, M. J. Kurylo, M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, (1997).
  57. S. Madronich, G. Weller, “Numerical integration errors in calculated tropospheric photodissociation rate coefficients,” J. Atmos. Chem. 10, 289–300 (1990). [CrossRef]
  58. L. T. Molina, M. J. Molina, “Absolute absorption cross sections of ozone in the 185–350-nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986). [CrossRef]
  59. F. Rohrer, Forschungszentrum Jülich, Jülich, (personal communication, 1997).
  60. A. Kraus, T. Brauers, D. Brüning, A. Hofzumahaus, F. Rohrer, N. Houben, H. W. Pätz, A. Volz-Thomas, “Results of the NO2-photolysis frequency intercomparison JCOM97” (in German), Vol. JUEL 3578 of (Forschungszentrum Jülich GmbH, Jülich, 1998).
  61. R. E. Shetter, M. Müller, “Photolysis frequency measurements using actinic flux spectroradiometry during the PEM-Tropics Mission: Instrumentation description and some results,” J. Geophys. Res. 104, 5647–5661 (1999). [CrossRef]
  62. R. Schmitt, Meteorologie Consult GmbH, Glashütten (personal communication, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited