OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 21 — Jul. 20, 1999
  • pp: 4461–4474

Error analysis for the lidar backward inversion algorithm

Francesc Rocadenbosch and Adolfo Comerón  »View Author Affiliations


Applied Optics, Vol. 38, Issue 21, pp. 4461-4474 (1999)
http://dx.doi.org/10.1364/AO.38.004461


View Full Text Article

Enhanced HTML    Acrobat PDF (265 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Here we depart from the inhomogeneous solution of a lidar equation using the backward inversion algorithm that is nowadays generally referred to as the Klett method. In particular, we develop an error sensitivity study that relates errors in the user-input parameters boundary extinction and exponential term in the extinction-to-backscatter relationship to errors in the inverted extinction profile. The validity of the analysis presented is limited only by the validity of application of the inversion algorithm itself, its numerical performance having been tested for optical depths in the 0.01–10 range. Toward this end, we focus on an introductory background about how uncertainties in these two parameters can apply to a family of inverted extinction profiles rather than a single profile and on its range-dependent behavior as a function of the optical thickness of the lidar inversion range. Next, we performed a mathematical study to derive the error span of the inverted extinction profile that is due to uncertainties in the above-mentioned user calibration parameters. This takes the form of upper and lower range-dependent error bounds. Finally, appropriate inversion plots are presented as application examples of this study to a parameterized set of atmospheric scenes inverted from both synthesized elastic-backscatter lidar signals and a live signal.

© 1999 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.3640) Atmospheric and oceanic optics : Lidar

History
Original Manuscript: October 13, 1998
Revised Manuscript: March 29, 1999
Published: July 20, 1999

Citation
Francesc Rocadenbosch and Adolfo Comerón, "Error analysis for the lidar backward inversion algorithm," Appl. Opt. 38, 4461-4474 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-21-4461


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Hitschfeld, J. Bordan, “Errors inherent in the radar measurement of rainfall at attenuating wavelengths,” J. Appl. Meteorol. 11, 58–67 (1954). [CrossRef]
  2. E. W. Barret, O. Ben-Dov, “Application of the lidar to air pollution measurements,” J. Appl. Meteorol. 6, 500–515 (1967). [CrossRef]
  3. W. Viezee, E. E. Uthe, R. T. H. Collis, “Lidar observations of airfield approach conditions: an exploration study,” J. Appl. Meteorol. 8, 274–283 (1969). [CrossRef]
  4. P. A. Davis, “Analysis of lidar signatures of cirrus clouds,” Appl. Opt. 8, 2099–2102 (1969). [CrossRef] [PubMed]
  5. F. G. Fernald, B. M. Herman, J. A. Reagan, “Determination of aerosol height distribution by lidar,” J. Appl. Meteorol. 11, 482–489 (1972). [CrossRef]
  6. R. T. H. Collis, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, New York, 1976), Chap. 4, pp. 71–102. [CrossRef]
  7. R. H. Kohl, “Discussion of the interpretation problem encountered in single-wavelength lidar transmissometers,” J. Appl. Meteorol. 17, 1034–1038 (1978). [CrossRef]
  8. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1985). [CrossRef]
  9. S. R. Pal, W. Steinbrecht, A. I. Carswell, “Automated method for lidar determination of cloud-base height and vertical extent,” Appl. Opt. 31, 1488–1494 (1992). [CrossRef] [PubMed]
  10. G. J. Kunz, G. de Leeuw, “Inversion of lidar signals with the slope method,” Appl. Opt. 32, 3249–3256 (1993). [CrossRef] [PubMed]
  11. F. Rocadenbosch, A. Comerón, D. Pineda, “Assessment of lidar inversion errors for homogeneous atmospheres,” Appl. Opt. 37, 2199–2206 (1998). [CrossRef]
  12. G. J. Kunz, “Vertical atmospheric profiles measured with lidar,” Appl. Opt. 22, 1955–1957 (1983). [CrossRef] [PubMed]
  13. J. A. Ferguson, D. H. Stephans, “Algorithm for inverting lidar returns,” Appl. Opt. 22, 3673–3675 (1983). [CrossRef] [PubMed]
  14. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef] [PubMed]
  15. Y. Sasano, “Observational study on atmospheric mixed layer and transition layer structures using Mie lidar,” J. Meteorol. Soc. Jpn. 63, 419–435 (1985).
  16. H. G. Hughes, J. A. Ferguson, D. H. Stephans, “Sensitivity of a lidar inversion algorithm to parameters relating atmospheric backscatter and extinction,” Appl. Opt. 24, 1609–1613 (1985). [CrossRef] [PubMed]
  17. J. D. Klett, “Extinction boundary value algorithm for lidar inversion,” Appl. Opt. 25, 2462–2464 (1986). [CrossRef] [PubMed]
  18. L. R. Bissonnette, “Sensitivity analysis of lidar inversion algorithms,” Appl. Opt. 25, 2122–2125 (1986). [CrossRef] [PubMed]
  19. Y. Sasano, H. Nakane, “Significance of the extinction backscatter ratio and the boundary value term in the solution for the two-component lidar equation,” Appl. Opt. 23, 11–13 (1984). [CrossRef]
  20. J. D. Klett, “Lidar inversion with variable backscatter extinction ratios,” Appl. Opt. 24, 1638–1643 (1985). [CrossRef] [PubMed]
  21. M. Kaestner, “Lidar inversion with variable backscatter/extinction ratios: comment,” Appl. Opt. 25, 833–835 (1986). [CrossRef] [PubMed]
  22. Y. Sasano, E. V. Browell, S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985). [CrossRef] [PubMed]
  23. R. G. Pinnick, J. M. Rosen, D. J. Hofman, “Stratospheric aerosol measurements. III: Optical model calculations,” J. Atmos. Sci. 33, 304–314 (1976). [CrossRef]
  24. P. B. Russell, T. J. Swissler, M. P. McCormick, W. P. Chu, J. M. Livingston, T. J. Pepin, “Satellite and correlative measurements of the stratospheric aerosol. I: An optical model for data conversion,” J. Atmos. Sci. 38, 1279–1294 (1981). [CrossRef]
  25. V. E. Zuev, “Laser beams in the atmosphere,” translated from the Russian by J. S. Wood (Consultants Bureau, New York, 1982).
  26. Y. Sasano, H. Nakane, “Quantitative analysis of RHI lidar data by an iterative adjustment of the boundary condition term in the lidar solution,” Appl. Opt. 26, 615–616 (1987). [CrossRef] [PubMed]
  27. R. W. Fenn, “Correlation between atmospheric backscattering and meteorological visual range,” Appl. Opt. 5, 293–295 (1966). [CrossRef] [PubMed]
  28. S. Twomey, H. B. Howell, “Relative merit of white and monochromatic light for the determination of visibility by backscattering measurements,” Appl. Opt. 4, 501–506 (1965). [CrossRef]
  29. G. L. Kunz, “Probing of the atmosphere with lidar,” AGARD Conf. Proc. 23, 1–11 (1992).
  30. J. D. Klett, “Lidar calibration and extinction coefficients,” Appl. Opt. 22, 514–515 (1983). [CrossRef] [PubMed]
  31. R. T. Brown, “A new lidar for meteorological application,” J. Appl. Meteorol. 12, 698–708 (1973). [CrossRef]
  32. L. R. Bissonnette, D. L. Hutt, “Multiple-scattering aerosol lidar inversion method,” Can. J. Phys. 71, 39–46 (1993). [CrossRef]
  33. J. A. Weinman, “Derivation of atmospheric extinction profiles and wind speed over the ocean from a satellite-borne lidar,” Appl. Opt. 27, 3994–4001 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited