OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 21 — Jul. 20, 1999
  • pp: 4486–4493

Processing and Characterization of Silver Films Used to Fabricate Hollow Glass Waveguides

Christopher D. Rabii, Daniel J. Gibson, and James A. Harrington  »View Author Affiliations

Applied Optics, Vol. 38, Issue 21, pp. 4486-4493 (1999)

View Full Text Article

Acrobat PDF (661 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hollow glass waveguides are an increasingly popular fiber for the delivery of high-power IR laser radiation. At CO<sub>2</sub> laser wavelengths the measured and theoretical losses agree, but at the 3-μm Er:YAG laser wavelength the losses remain higher than expected. The reason for this is the surface roughness of the silver film used to form the first layer of the Ag/AgI thin-film structure. We found that the roughness of the silver film increases fivefold as silvering times increase from 5 to 80 min. This increased surface roughness produces a concomitant linear increase in the attenuation coefficient for the silver-only guides for wavelengths shorter than approximately 5 μm.

© 1999 Optical Society of America

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(140.3510) Lasers and laser optics : Lasers, fiber
(230.7370) Optical devices : Waveguides

Christopher D. Rabii, Daniel J. Gibson, and James A. Harrington, "Processing and Characterization of Silver Films Used to Fabricate Hollow Glass Waveguides," Appl. Opt. 38, 4486-4493 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  2. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  3. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
  4. H. K. Pulker, Thin Films Science and Technology. 6: Coatings on Glass (Elsevier Science, Amsterdam, 1985).
  5. Y. Matsuura, T. Abel, and J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
  6. Y. Matsuura and J. A. Harrington, “Infrared hollow glass waveguides fabricated by chemical vapor deposition,” Opt. Lett. 20, 2078–2080 (1995).
  7. Y. Matsuura and M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
  8. M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
  9. B. Schweig, Mirrors: A Guide to the Manufacture of Mirrors and Reflecting Surfaces (Pelham, London, 1973).
  10. M. V. H. Rao, M. K. Mathur, and K. L. Chopra, “Scanning tunneling microscopy studies of nucleation and growth of silver films,” J. Mater. Sci. 30, 2682–2685 (1995).
  11. II–VI Product Literature, “Reflection and material properties for metal mirrors used at 10.6 microns” (II–VI Incorporated, Saxonburg Pa, 1995).
  12. K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
  13. J. A. Harrington and Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, and D. M. Harris, eds., Proc. SPIE 2396, 4–14 (1995).
  14. R. L. Kozodoy, A. T. Pagkalinawan, and J. A. Harrington, “Small-bore hollow waveguides for delivery of 3-μm laser radiation,” Appl. Opt. 35, 1077–1082 (1996).
  15. M. G. Drexage and C. T. Moynihan, “Infrared optical fibers,” Sci. Am. 259, 110–115 (1988).
  16. O. B. Danilov, M. I. Zinchenko, Y. A. Rubinov, and E. N. Sosnov, “Transmission losses and mode-selection characteristics of a curved hollow dielectric waveguide with a rough surface,” J. Opt. Soc. Am. B 7, 1785–1790 (1990).
  17. Y. Matsuura, M. Saito, M. Miyagi, and A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
  18. M. Alaluf, J. Dror, R. Dahan, and N. Croitoru, “Plastic hollow fibers as a selective infrared radiation transmitting medium,” J. Appl. Phys. 72, 3878–3883 (1992).
  19. C. Deumié, R. Richier, P. Dumas, and C. Amra, “Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,” Appl. Opt. 35, 5583–5594 (1996).
  20. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed. (Wiley, New York, 1976).
  21. R. Dahan, J. Dror, A. Inberg, and N. Croitoru, “Scattering of IR and visible radiation from hollow waveguides,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, and D. M. Harris, eds., Proc. SPIE 2396, 115–119 (1995).
  22. Y. Abe, Y. Matsuura, Y. Shi, and Y. Wong, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23, 89–90 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited