OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 21 — Jul. 20, 1999
  • pp: 4558–4565

Characterization of fiber distributed-feedback lasers with an index-perturbation method

Erlend Rønnekleiv, Morten Ibsen, Michael N. Zervas, and Richard I. Laming  »View Author Affiliations


Applied Optics, Vol. 38, Issue 21, pp. 4558-4565 (1999)
http://dx.doi.org/10.1364/AO.38.004558


View Full Text Article

Enhanced HTML    Acrobat PDF (126 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the characterization of fiber distributed-feedback lasers by scanning a heat-induced index perturbation along the cavity and by measuring the induced laser frequency shift. The measured shift is shown to be a good indicator for the intensity distribution in the cavity, and the experimental results reveal that the sensitivity of fiber distributed-feedback laser sensors with frequency readout is highly localized near the grating phase-shift position. Use of the characterization data to determine the grating coupling parameter κ, the polarization dependence of κ, and birefringence nonuniformities as well as for identification of the order of longitudinal mode operation are discussed and demonstrated experimentally. Asymmetrically phase-shifted lasers with highly directional output are also investigated.

© 1999 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.3430) Lasers and laser optics : Laser theory
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4780) Lasers and laser optics : Optical resonators
(230.1480) Optical devices : Bragg reflectors

History
Original Manuscript: January 4, 1999
Revised Manuscript: April 6, 1999
Published: July 20, 1999

Citation
Erlend Rønnekleiv, Morten Ibsen, Michael N. Zervas, and Richard I. Laming, "Characterization of fiber distributed-feedback lasers with an index-perturbation method," Appl. Opt. 38, 4558-4565 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-21-4558


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. J. P. Ketelsen, I. Hoshino, D. A. Ackerman, “The role of axially nonuniform carrier density in altering the TE–TE gain margin in InGaAsP-InP DFB lasers,” IEEE J. Quantum Electron. 27, 957–964 (1991). [CrossRef]
  2. M. R. Phillips, T. E. Darchie, E. J. Flynn, “Experimental measure of dynamic spatial-hole burning in DFB lasers,” IEEE Photon. Technol. Lett. 4, 1201–1203 (1992). [CrossRef]
  3. W. H. Loh, B. N. Samson, J. P. de Sandro, “Intensity profile in a distributed feedback fibre laser characterized by a green fluorescence scanning technique,” Appl. Phys. Lett. 69, 3773–3775 (1996). [CrossRef]
  4. E. Brinkmeyer, G. Stolze, D. Johlen, “Optical space domain reflectometry (OSDR) for determination of strength and chirp distribution along optical fiber gratings,” in Photosensitivity in Glasses, Vol. 17 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997).
  5. A. Cunliffe, L. E. S. Mathias, “Some perturbation effects in cavity resonators,” Proc. Inst. Electron. Eng. 97, 367–376 (1950).
  6. H. B. G. Casimir, “On the theory of electromagnetic waves in resonant cavities,” Phillips Res. Rep. 6, 162–182 (1951).
  7. E. Rønnekleiv, M. Ibsen, M. N. Zervas, R. I. Laming, “Characterization of intensity distribution in symmetric and asymmetric fiber DFB lasers,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 80.
  8. J. T. Kringlebotn, J. L. Archambault, L. Reekie, D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19, 2101–2103 (1994). [CrossRef] [PubMed]
  9. V. C. Lauridsen, T. Søndergaard, P. Varming, J. H. Povlsen, “Design of distributed feedback fibre lasers,” in Proceedings of the European Conference on Optical Communications ’97, (Institution of Electrical Engineers, London, 1997), Vol. 3, pp. 39–42.
  10. H. Soda, Y. Kotaki, H. Sudo, H. Ishikava, S. Yamakoshi, H. Imai, “Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers,” IEEE J. Quantum Electron. QE-23, 804–814 (1987). [CrossRef]
  11. E. Rønnekleiv, O. Hadeler, “Stability of an Er–Yb-doped fiber distributed-feedback laser with external reflections,” Opt. Lett. 24, 617–619 (1999). [CrossRef]
  12. G. A. Ball, C. G. Hull-Allen, J. Livas, “Frequency noise of a Bragg grating fibre laser,” Electron. Lett. 30, 1229–1230 (1994). [CrossRef]
  13. E. Rønnekleiv, M. N. Zervas, J. T. Kringlebotn, “Modelling of polarization mode competition in fiber DFB lasers,” IEEE J. Quantum Electron. 34, 1559–1569 (1998). [CrossRef]
  14. L. Dong, W. H. Loh, J. E. Caplen, J. D. Minelly, L. Reekie, “Efficient single-frequency fiber-lasers with novel photosensitive Er/Yb optical fibers,” Opt. Lett. 22, 694–669 (1997). [CrossRef] [PubMed]
  15. J. I. Sakai, T. Kimura, “Birefringence caused by thermal stress in elliptically deformed core optical fibers,” IEEE J. Quantum Electron. QE-18, 1899–1909 (1982). [CrossRef]
  16. A. Simon, R. Ulrich, “Evolution of polarization along a single-mode fiber,” Appl. Phys. Lett. 31, 517–521 (1977). [CrossRef]
  17. T. Erdogan, V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 10, 2100–2105 (1994). [CrossRef]
  18. O. Hadeler, E. Rønnekleiv, M. Ibsen, R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38, 1953–1959 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited