OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 21 — Jul. 20, 1999
  • pp: 4585–4595

Aerosol Observations by Lidar in the Nocturnal Boundary Layer

Paolo Di Girolamo, Paolo Francesco Ambrico, Aldo Amodeo, Antonella Boselli, Gelsomina Pappalardo, and Nicola Spinelli  »View Author Affiliations


Applied Optics, Vol. 38, Issue 21, pp. 4585-4595 (1999)
http://dx.doi.org/10.1364/AO.38.004585


View Full Text Article

Acrobat PDF (193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Aerosol observations by lidar in the nocturnal boundary layer (NBL) were performed in Potenza, Southern Italy, from 20 January to 20 February 1997. Measurements during nine winter nights were considered, covering a variety of boundary-layer conditions. The vertical profiles of the aerosol backscattering coefficient at 355 and 723.37 nm were determined through a Klett-modified iterative procedure, assuming the extinction-to-backscattering ratio within the NBL has a constant value. Aerosol average size characteristics were retrieved from almost simultaneous profiles of the aerosol backscattering coefficient at 355 and 723.37 nm, the measurements being consistent with an accumulation mode radius not exceeding 0.4 μm. Similar results in terms of aerosol sizes were obtained from measurements of the extinction-to-backscattering ratio profile at 355 nm performed on six nights during the measurement campaign. Backscattering profiles at 723.37 nm were also converted into profiles of aerosol liquid water content.

© 1999 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar
(290.1310) Scattering : Atmospheric scattering
(290.1350) Scattering : Backscattering
(290.4020) Scattering : Mie theory

Citation
Paolo Di Girolamo, Paolo Francesco Ambrico, Aldo Amodeo, Antonella Boselli, Gelsomina Pappalardo, and Nicola Spinelli, "Aerosol Observations by Lidar in the Nocturnal Boundary Layer," Appl. Opt. 38, 4585-4595 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-21-4585


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Boers, and E. W. Eloranta, “Lidar observations of the mixed layer dynamics: tests of parameterized entrainment models of mixed layer growth rate,” J. Clim. Appl. Meteorol. 223, 247–266 (1984).
  2. M. Lavorato, J. Fochessato, E. Quel, P. H. Flamant, and J. Pelon, “Monitoring of cirrus, clouds and planetary boundary layer in southern hemisphere at Buenos Aires (34.6 S, 58.5 W) for climate applications,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 91–94.
  3. R. A. Ferrare, S. H. Melfi, D. Whiteman, K. D. Evans, G. Schwemmer, Y. Kaufman, and R. Ellingson, “Raman lidar and sun photometer measurements of aerosols and water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 23–26.
  4. S. Yamagishi, H. Yamanouchi, and M. Tsuchiya, “Shipboard lidar sensing of mixed layer over the sea,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 35–38.
  5. S. P. Palm, D. Hagan, G. Schwemmer, and S. H. Melfi, “Inference of atmospheric boundary layer water vapor and temperature profiles over the ocean using airborne lidar data,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux and U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 39–42.
  6. C. Flamant, and J. Pelon, “Atmospheric boundary layer structure over the Mediterranian during a tramontane event: evidence of gravity waves influence,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 31–34.
  7. K. E. Kunkel, E. W. Eloranta, and S. T. Shipley, “Lidar observations of the convective boundary layer,” J. Appl. Meteorol. 16, 1306–1311 (1977).
  8. L. Menut, C. Flamant, J. Pelon, R. Valentin, P. H. Flamant, E. Dupont, and B. Carissimo, “Study of the boundary layer structure over the Paris agglomeration as observed during the ECLAP experiment,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 15–18.
  9. T. Murayama, M. Furushima, A. Oda, and N. Iwasaka, “Aerosol optical properties in the urban mixing layer studied by polarization lidar with meteorological data,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 19–22.
  10. Y. Sasano, “Observation study for sensing the atmospheric mixed layer and transition layer structure using Mie lidar,” J. Meteorol. Soc. Jpn. 63, 419–435 (1985).
  11. P. C. S. Devara, P. E. Raj, and S. Sharma, “Remote sensing of atmospheric aerosol in the nocturnal boundary layer,” Environ. Pollut. 85, 97–102 (1994).
  12. P. C. S. Devara, G. Pandithurai, P. E. Raj, R. S. Maheskumar, and K. K. Dani, “Atmospheric aerosol–cloud stability relationship as observed with optical and radio remote sensing techniques,” Atmos. Res. 49, 65–78 (1998).
  13. P. E. Raj, P. C. S. Devara, R. S. Maheskumar, G. Pandithurai, and K. K. Dani, “Lidar measurements of the aerosol column content in an urban nocturnal boundary layer,” Atmos. Res. 45, 201–216 (1997).
  14. D. Müller, U. Wandinger, D. Althausen, I. Mattis, and A. Ansmann, “Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelength,” Appl. Opt. 37, 2260–2263 (1998).
  15. Y. Sasano and E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670–1679 (1989).
  16. A. D’Altorio, F. Masci, V. Rizi, G. Visconti, and M. Verdecchia, “Continuous lidar measurements of stratospheric aerosols and ozone after the Pinatubo eruption Part II: time evolution of ozone profiles and aerosol properties,” Geophys. Res. Lett. 20, 2869–2872 (1993).
  17. M. Del Guasta, M. Morandi, L. Stefanutti, B. Stein, and J. P. Wolf, “Derivation of Mount Pinatubo stratospheric aerosol mean size distribution by means of a multiwavelength lidar,” Appl. Opt. 33, 5690–5697 (1994).
  18. P. Di Girolamo, R. V. Gagliardi, G. Pappalardo, R. Velotta, V. Berardi, and N. Spinelli, “Two-wavelength lidar analysis of stratospheric aerosol size,” J. Aerosol Sci. 26, 989–1001 (1995).
  19. T. D. Crum, R. B. Stull, and E. W. Eloranta, “Coincident lidar and aircraft observations of entrainment into thermals and mixed layers,” J. Clim. Appl. Meteorol. 26, 774–788 (1987).
  20. Y. Sasano, I. Matsui, H. Shimizu, and N. Takeuchi, “Automatic determination of atmospheric mixed layer height in routine measurements by a laser radar,” J. Jpn. Soc. Air Pollut. 18, 175–183 (1983).
  21. R. Velotta, B. Bartoli, R. Capobianco, L. Fiorani, and N. Spinelli, “Analysis of the receiver response in lidar measurements,” Appl. Opt. 37, 6999–7007 (1998).
  22. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1642 (1985).
  23. E. W. Browell, S. Ismail, and S. T. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 1638–1643 (1985).
  24. V. E. Zuev, Laser Beams in the Atmosphere, translated by J. S. Wood (Consultant Bureau, New York, 1982), p. 504.
  25. H. W. M. Salemink, P. Schotanus, and J. B. Bergwerff, “Quantitative lidar at 532 nm for vertical extinction profiles and the effect of relative humidity,” Appl. Phys. B 34, 187–189 (1984).
  26. R. T. H. Collis and P. B. Russel, “Lidar measurements of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 80–102.
  27. M. P. McCormick, “Simultaneous multiple wavelength laser radar measurements of the lower atmosphere,” in Proceeding of the Electro-Optics International Conference (Industrial and Scientific Conference Management, Chicago, 1971), pp. 24–26.
  28. P. F. Ambrico, A. Amodeo, S. Amoruso, M. Armenante, V. Berardi, A. Boselli, R. Bruzzese, R. Capobianco, P. Di Girolamo, L. Fiorani, G. Pappalardo, N. Spinelli, and R. Velotta, “A multiparametric lidar system spanning from UV to the mid IR,” Laser Optoelektron. 29, 62–69 (1997).
  29. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
  30. S. P. Arya, Introduction to Micrometeorology, International Geophysics Series, Vol. 42 (Academic, London, 1988), p. 582.
  31. R. B. Stull, Introduction to Boundary Layer Meteorology (Kluwer Academic, Dordrecht, The Netherlands, 1988), p. 666.
  32. E. E. Gossard, J. E. Gaynor, R. J. Zamora, and W. D. Neff, “Fine structure of elevated stable layers observed by sounder and in situ tower measurements,” J. Atmos. Sci. 42, 2156–2169 (1985).
  33. R. Jaenicke, Aerosol–Cloud–Climate Interactions (Academic, London, 1993), p. 237.
  34. E. P. Shettle and R. W. Fenn, “Models of atmospheric aerosols and their optical properties,” Electromagnetic Wave Propagation Panel of the Advisory Group for Aerospace Research and Development, 22 Technical Meeting, Optical Propagation in the Atmosphere (Technical University of Denmark, Lyngby, Denmark, 1975), pp. 321–324.
  35. B. Nilsson, “Meteorological influence on aerosol extinction in the 0.2–40-μm wavelength range,” Appl. Opt. 18, 3457–3473 (1979).
  36. V. Cuomo, P. Di Girolamo, F. Esposito, G. Pappalardo, F. Romano, C. Serio, N. Spinelli, M. Armenante, B. Bartoli, V. Berardi, R. Bruzzese, C. Belleci, G. E. Caputi, F. De Donato, P. Gaudio, and M. Valentini, “Correlative ground-based lidar measurements for LITE,” in Lidar and Atmospheric Sensing, R. J. Becherer, ed., Proc. SPIE 2505, 46–54 (1995).
  37. F. Esposito, G. Pavese, and C. Serio, “Atmospheric aerosol hygroscopical growth in a rural location in southern Italy,” International Workshop, Atmospheric Transparency from Satellites: Effects of Aerosols and Thin Clouds (Università della Basilicata, Maratea, 1997), p. 8.
  38. G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73–188 (1976).
  39. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
  40. K. Fisher, “Mass absorption coefficient of natural aerosol particles in the 0.4–2.4-μm wavelength interval,” Beitr. Phys. Atmos. 46, 89–100 (1973).
  41. G. E. Shaw, “Aerosol-size temperature relationship,” Geophys. Res. Lett. 15, 133–135 (1988).
  42. G. M. Krekov, “Models of atmospheric aerosols,” in Aerosol Effects on Climate, S. G. Jenning, ed. (University of Arizona Press, Tucson, Ariz., 1992), pp. 9–72.
  43. G. Hänel and K. Bullrich, “Physico-chemical properties models of tropospheric aerosol particles,” Phys. Atmos. 51, 129–138 (1977).
  44. R. H. Dubinsky, A. I. Carswell, and S. R. Pal, “Determination of cloud microphysical properties by laser backscattering and extinction measurements,” Appl. Opt. 24, 1614–1622 (1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited