OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 21 — Jul. 20, 1999
  • pp: 4596–4608

Quantitative hydroxyl concentration time-series measurements in turbulent nonpremixed flames

Michael W. Renfro, Galen B. King, and Normand M. Laurendeau  »View Author Affiliations


Applied Optics, Vol. 38, Issue 21, pp. 4596-4608 (1999)
http://dx.doi.org/10.1364/AO.38.004596


View Full Text Article

Enhanced HTML    Acrobat PDF (915 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Quantitative hydroxyl concentration time-series measurements have been obtained by picosecond time-resolved laser-induced fluorescence in a series of methane–air and hydrogen–argon–air nonpremixed flames. The recovery of a quantitative time series is complicated by the need to account for fluctuations in the fluorescence lifetime. We have recently developed instrumentation that enables the simultaneous measurement of fluorescence signal and lifetime. The present research represents the first application of this technique to turbulent flames. The correction for hydroxyl lifetime fluctuations is shown to be significant for mean concentrations and thus probability density functions but negligible for power spectral densities (PSD’s). The hydroxyl PSD’s were found to vary slightly with radial and axial location in the flames and to vary significantly with Reynolds number. However, the PSD’s in the H2–Ar–air flames are nearly identical to those in the CH4–air flames.

© 1999 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(280.7060) Remote sensing and sensors : Turbulence
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6500) Spectroscopy : Spectroscopy, time-resolved

History
Original Manuscript: November 30, 1998
Revised Manuscript: April 13, 1999
Published: July 20, 1999

Citation
Michael W. Renfro, Galen B. King, and Normand M. Laurendeau, "Quantitative hydroxyl concentration time-series measurements in turbulent nonpremixed flames," Appl. Opt. 38, 4596-4608 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-21-4596


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. B. Pope, “PDF methods for turbulent reactive flows,” Prog. Energy Combust. Sci. 11, 119–192 (1985). [CrossRef]
  2. N. Peters, “Laminar flamelet concepts in turbulent combustion,” in the Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1986), pp. 1231–1250.
  3. M. G. Allen, R. D. Howe, R. K. Hanson, “Digital imaging of reaction zones in hydrocarbon-air flames using planar laser-induced fluorescence of CH and C2,” Opt. Lett. 11, 126–128 (1986). [CrossRef]
  4. N. T. Clemens, P. H. Paul, M. G. Mungal, “The structure of OH fields in high Reynolds number turbulent jet diffusion flames,” Combust. Sci. Technol. 129, 165–184 (1997). [CrossRef]
  5. M. C. Drake, R. W. Pitz, “Comparison of turbulent diffusion flame measurements of OH by planar fluorescence and saturated fluorescence,” Exp. Fluids 3, 283–292 (1985).
  6. J. E. de Vries, Th. H. van der Meer, C. J. Hoogendoorn, “OH concentration fluctuations in turbulent natural gas jet flames,” Chem. Eng. J. 53, 39–46 (1993).
  7. A. W. Johnson, K. R. Sreenivasan, M. Winter, “The thickness distribution of OH regions in a turbulent diffusion flame,” Combust. Sci. Technol. 89, 1–7 (1993). [CrossRef]
  8. S. H. Stårner, R. W. Bilger, R. W. Dibble, R. S. Barlow, D. C. Fourguette, M. B. Long, “Joint planar CH and OH LIF imaging in piloted turbulent jet diffusion flames near extinction,” in Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 341–349. [CrossRef]
  9. N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995). [CrossRef]
  10. R. S. Barlow, R. W. Dibble, J.-Y. Chen, R. P. Lucht, “Effect of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” Combust. Flame 82, 235–251 (1990). [CrossRef]
  11. R. S. Barlow, C. D. Carter, “Raman/Rayleigh/LIF measurements of nitric oxide formation in turbulent hydrogen jet flames,” Combust. Flame 97, 261–280 (1994). [CrossRef]
  12. H. Tennekes, J. L. Lumley, A First Course in Turbulence (MIT, Cambridge, Mass., 1972).
  13. L. Mydlarski, Z. Warhaft, “On the onset of high-Reynolds-number grid-generated wind tunnel turbulence,” J. Fluid Mech. 320, 331–368 (1996). [CrossRef]
  14. I. Gökalp, I. G. Shepherd, R. K. Cheng, “Spectral behavior of velocity fluctuations in premixed turbulent flames,” Combust. Flame 71, 313–323 (1988). [CrossRef]
  15. J. D. Li, R. J. Brown, R. W. Bilger, “Spectral measurement of reactive and conserved scalars in a turbulent reactive-scalar-mixing layer,” in Turbulent Shear Flows 9, F. Durst, N. Kasagi, B. E. Launder, F. W. Schmidt, K. Suzuki, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1993), pp. 411–425.
  16. S. M. Masutani, C. T. Bowman, “The structure of a chemically reacting plane mixing layer,” J. Fluid Mech. 172, 93–126 (1986). [CrossRef]
  17. S. Corrsin, “Further generalization of Onsager’s cascade model for turbulent spectra,” Phys. Fluids 7, 1156–1159 (1964). [CrossRef]
  18. Y.-H. Pao, “Statistical behavior of a turbulent multicomponent mixture with first-order reactions,” AIAA J. 2, 1550–1559 (1964). [CrossRef]
  19. M. Q. McQuay, S. M. Cannon, “Time-resolved temperature measurements in the developing region of an elliptic, jet diffusion flame at Reynolds number of 6000,” Combust. Sci. Technol. 119, 13–33 (1996). [CrossRef]
  20. M. E. Kounalakis, J. P. Gore, G. M. Faeth, “Turbulence/radiation interactions in nonpremixed hydrogen/air flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1281–1290.
  21. M. W. Renfro, M. S. Klassen, G. B. King, N. M. Laurendeau, “Time-series measurements of CH concentration in turbulent CH4/air flames by use of picosecond time-resolved laser-induced fluorescence,” Opt. Lett. 22, 175–177 (1997). [CrossRef] [PubMed]
  22. M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998). [CrossRef]
  23. S. D. Pack, M. W. Renfro, G. B. King, N. M. Laurendeau, “Photon-counting technique for rapid fluorescence-decay measurement,” Opt. Lett. 23, 1215–1217 (1998). [CrossRef]
  24. S. D. Pack, M. W. Renfro, G. B. King, N. M. Laurendeau, “Laser-induced fluorescence triple-integration method applied to hydroxyl concentration and fluorescence lifetime measurements,” Combust. Sci. Technol. 140, 405–425 (1999). [CrossRef]
  25. M. W. Renfro, S. D. Pack, G. B. King, N. M. Laurendeau, “A pulse-pileup correction procedure for rapid measurements of hydroxyl concentrations using picosecond time-resolved laser-induced fluorescence,” App. Phys. B (to be published).
  26. J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Measurements and modeling of OH and NO in premixed C2H6/O2/N2 flames at atmospheric pressure,” Energy Fuels 11, 1092–1100 (1997). [CrossRef]
  27. R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, “A fortran program for modeling steady laminar one-dimensional premixed flames,” (Sandia National Laboratories, Livermore, Calif., 1985).
  28. C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, M. Goldenberg, GRI-Mech Home Page, Internet address: http://www.me.berkeley.edu/gri_mech/ (1995).
  29. G. E. P. Box, G. M. Jenkins, Time Series Analysis (Holden-Day, San Francisco, Calif., 1976).
  30. S. Gaskey, P. Vacus, R. David, J. Villermaux, J. C. André, “A method for the study of turbulent mixing using fluorescence spectroscopy,” Exp. Fluids 9, 137–147 (1990). [CrossRef]
  31. M. W. Renfro, “Time-series measurements of laser-induced OH and CH fluorescence in laminar and turbulent flames,” M.S. thesis (Purdue University, West Lafayette, Ind., 1997).
  32. P. H. Paul, “A model for temperature-dependent collisional quenching of OH A2Σ+,” J. Quant. Spectrosc. Radiat. Transfer 51, 511–524 (1994). [CrossRef]
  33. M. C. Drake, R. W. Pitz, M. Lapp, C. P. Fenimore, R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Measurements of superequilibrium hydroxyl concentrations in turbulent nonpremixed flames using saturated fluorescence,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 327–335.
  34. T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multispecies measurement in a lifted hydrogen diffusion flame,” Combust. Flame 91, 323–345 (1992). [CrossRef]
  35. M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, N. M. Laurendeau, “Flame concentration measurements using picosecond time-resolved laser-induced fluorescence,” Combust. Sci. Technol. 97, 391–403 (1994). [CrossRef]
  36. M. W. Renfro, Y. R. Sivathanu, J. P. Gore, G. B. King, N. M. Laurendeau, “Time-series analysis and measurements of intermediate species concentration spectra in turbulent nonpremixed flames,” in Twenty-Seventh Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1015–1022. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited