OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 21 — Jul. 20, 1999
  • pp: 4623–4634

Electro-optic lightning detector

William J. Koshak and Richard J. Solakiewicz  »View Author Affiliations


Applied Optics, Vol. 38, Issue 21, pp. 4623-4634 (1999)
http://dx.doi.org/10.1364/AO.38.004623


View Full Text Article

Enhanced HTML    Acrobat PDF (231 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate electro-optic crystal that is attached in series to a flat-plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (λ = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center in northern Alabama.

© 1999 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(140.0140) Lasers and laser optics : Lasers and laser optics

History
Original Manuscript: December 7, 1998
Revised Manuscript: March 29, 1999
Published: July 20, 1999

Citation
William J. Koshak and Richard J. Solakiewicz, "Electro-optic lightning detector," Appl. Opt. 38, 4623-4634 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-21-4623


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Uman, The Lightning Discharge, Vol. 39 of International Geophysics Series (Academic, Orlando, Fla., 1987).
  2. N. Kitigawa, M. Brook, “A comparison of intracloud and cloud-to-ground lightning discharges,” J. Geophys. Res. 65, 1189–1201 (1960). [CrossRef]
  3. K. Osamu, K. Kakishita, “Electro-optical effect of Bi4Ge3O12 crystals for optical voltage sensors,” Jpn. J. Appl. Phys. 32, 4288–4291 (1993). [CrossRef]
  4. D. P. Hilliard, D. L. Mensa, “Photonic electromagnetic field sensor apparatus,” U. S. patent5,243,186 (7September1993).
  5. B. N. Nelson, C. Menzel, T. G. DiGiuseppe, “Fiber optic electric field sensor configurations for high bandwidth lightning research measurement applications,” in High Bandwidth Analog Applications of Photonics, J. Chang, ed., Proc. SPIE720, 85–91 (1986). [CrossRef]
  6. K. D. Masterson, “Photonic electric-field probe for frequencies up to 2 GHz,” in High Bandwidth Analog Applications of Photonics, J. Chang, ed., Proc. SPIE720, 100–104 (1986). [CrossRef]
  7. M. Kanoi, G. Takahashi, T. Sato, M. Higaki, E. Mori, K. Okumura, “Optical voltage and current measuring system for electric power systems,” IEEE Trans. Power Deliv. PWRD-1, 91–97 (1986). [CrossRef]
  8. K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a Bi12GeO20 single crystal,” J. Lightwave Technol. LT-1, 93–97 (1983). [CrossRef]
  9. K. Shibata, “A fibre optic electric field sensor using the electro-optic effect of Bi4Ge3O12,” in Proceedings of the First International Conference on Optical Fibre Sensors, Publication 221, (Institution of Electrical Engineers, London, 1983), pp. 164–168.
  10. Y. Hamasaki, H. Gotolt, M. Katoh, S. Takeuchi, “OPSEF: an optical sensor for measurement of high electric field strength,” Electron. Lett. 16, 406–407 (1980). [CrossRef]
  11. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  12. N. Tahara, M. Shimizu, K. Nakamura, E. Enukai, Y. Kojima, “A lightning warning device using liquid crystal elements,” in Sixth International Conference on Dielectric Materials (Pub. No. 363) (Institute of Electrical and Electronics Engineers, London, 1992), pp. 397–400.
  13. T. R. Sliker, S. R. Burlage, “Some dielectric and optical properties of KD2PO4,” J. Appl. Phys. 34, 1837–1840 (1963). [CrossRef]
  14. F. Pockels, Abhandlungen der Gesellschaft der Wissenschaften zu Gottingen, 39, 1, title and full page range not available; Pockels introduces linear electro-optic effect in this publication, 1893.
  15. F. Pockels, Lehrbuch der Kristalloptik (B. G. Teubner, Leipzig und Berlin, 1906).
  16. J. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 218.
  17. A. Ghatak, K. Thyagarajian, Optical Electronics (Cambridge U. Press, Cambridge, U.K., 1989), pp. 74–89.
  18. L. Levi, Applied Optics, a Guide to Optical System Design (Wiley, New York, 1980), Vol. 2, pp. 283–284.
  19. D. Holmes, “Exact theory of retardation plates,” J. Opt. Soc. Am. 54, 1115–1120 (1964). [CrossRef]
  20. D. Holmes, D. Freucht, “Electromagnetic wave propagation in birefringent multilayers,” J. Opt. Soc. Am. 56, 1763–1769 (1966). [CrossRef]
  21. A. Mickleson, Physical Optics (Van Nostrand Reinhold, New York, 1992), p. 17.
  22. B. H. Billings, “The electro-optic effect in uniaxial crystals of the type X H2PO4. II. Experimental,” J. Opt. Soc. Am. 39, 802–807 (1949). [CrossRef]
  23. L. L. Steinmetz, T. W. Pouliot, B. C. Johnson, “Cylindrical, ring-electrode KD*P electrooptic modulator,” Appl. Opt. 12, 1468–1471 (1973). [CrossRef] [PubMed]
  24. E. A. West, “Using KD*P modulators for polarization measurements of the Sun,” in Polarization Considerations for Optical Systems II, R. Chipman, ed., Proc. SPIE1166, 434–445 (1989). [CrossRef]
  25. E. A. West, N. Wilkins, “DC bias moulation characteristics of longitudinal KD*P modulators,” in Polarization Analysis and Measurement, D. Goldstein, R. Chipman, eds., Proc. SPIE1746, 386–394 (1992). [CrossRef]
  26. R. A. Phillips, “Temperature variation of the index of refraction of ADP, KDP, and deuterated KDP,” J. Opt. Soc. Am. 56, 629–632 (1966). [CrossRef]
  27. K. S. Lee, “New compensation method for bulk optical sensors with multiple birefringences,” Appl. Opt. 28, 2001–2011 (1989). [CrossRef] [PubMed]
  28. B. H. Billings, “The electro-optic effect in uniaxial crystals of the type XH2PO4. I. Theoretical,” J. Opt. Soc. Am. 39, 797–801 (1949). [CrossRef]
  29. B. H. Billings, “The electro-optic effect in uniaxial crystals of the dihydrogen phosphate (X H2PO4) type. IV. Angular field of the electro-optic shutter,” J. Opt. Soc. Am. 42, 12–20 (1952). [CrossRef]
  30. M. A. Gilbert, “Polarizability of an electro-optic parallelepiped crystal,” in High Bandwidth Analog Applications of Photonics, J. Chang, ed., Proc. SPIE720, 92–99 (1986). [CrossRef]
  31. G. W. Day, P. D. Hale, M. Deeter, T. E. Milner, D. Conrad, S. M. Etzel, “Limits to the precision of electro-optic and magneto-optic sensors,” Natl. Bur. Stand. (U.S.) Tech. Note 1307, PB87-212536 (U.S. Department of Commerce, National Bureau of Standards, Boulder, Colo, 1987).
  32. P. A. Williams, A. H. Rose, K. S. Lee, D. C. Conrad, G. W. Day, P. D. Hale, “Optical thermo-optic, electro-optic, and photoelastic properties of bismuth germanate (Bi4Ge3O12),” Appl. Opt. 35, 3562–3568 (1996). [CrossRef] [PubMed]
  33. C. Forno, O. C. Jones, “Hexamine electro-optic light modulators,” J. Phys. E 7, 101–104 (1974). [CrossRef]
  34. W. J. Koshak, E. P. Krider, “A linear method for analyzing lightning field changes,” J. Atmos. Sci. 51, 473–488 (1994). [CrossRef]
  35. W. J. Koshak, E. P. Krider, “Analysis of lightning field changes during active Florida thunderstorms,” J. Geophys. Res. 94, 1165–1186 (1989). [CrossRef]
  36. L. M. Maier, E. P. Krider, “The charges that are deposited by cloud-to-ground lightning in Florida,” J. Geophys. Res. 91, 13,275–13,289 (1986). [CrossRef]
  37. E. A. Jacobson, E. P. Krider, “Electrostatic field changes produced by Florida lightning,” J. Atmos. Sci. 33, 103–117 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited