OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 21 — Jul. 20, 1999
  • pp: 4635–4638

Use of a Fabry–Perot Interferometer to Isolate Pure Rotational Raman Spectra of Diatomic Molecules

Yuri Arshinov and Sergey Bobrovnikov  »View Author Affiliations


Applied Optics, Vol. 38, Issue 21, pp. 4635-4638 (1999)
http://dx.doi.org/10.1364/AO.38.004635


View Full Text Article

Acrobat PDF (81 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose to use a Fabry–Perot interferometer (FPI) as a comb frequency filter to isolate pure rotational Raman spectra (PRRS) of nitrogen molecules. In making the FPI’s free spectral range equal to the spectral spacing between the lines of nitrogen PRRS, which are practically equidistant, one obtains a device with a comb transmission function with the same period. However, to match the FPI transmission comb completely with the comb of nitrogen PRRS lines one should tune the wavelength of the radiation used to excite the PRRS of nitrogen exactly to the position of any minimum in the FPI transmission comb. Thus to achieve this task for the case of nitrogen PRRS one must take the FPI’s free spectral range Δν<sub><i>f</i></sub>= 4<i>B</i><sub>N<sub>2</sub></sub> and the wavelength of the exciting radiation such that (1/λ<sub>exc</sub>) = 4<i>B</i><sub>N<sub>2</sub></sub>(<i>k</i> + 1/2), where <i>B</i><sub>N<sub>2</sub></sub> is the rotational constant of the nitrogen molecule and <i>k</i> is an arbitrary integer number. In this case all (odd and even) pure rotational Raman lines of nitrogen will pass through the FPI while the line of exciting radiation is being suppressed. Additionally, a FPI cuts out the spectrally continuous sky background light from the spectral gaps between the PRRS lines.

© 1999 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(280.3640) Remote sensing and sensors : Lidar
(300.6330) Spectroscopy : Spectroscopy, inelastic scattering including Raman

Citation
Yuri Arshinov and Sergey Bobrovnikov, "Use of a Fabry–Perot Interferometer to Isolate Pure Rotational Raman Spectra of Diatomic Molecules," Appl. Opt. 38, 4635-4638 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-21-4635


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitey, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
  2. J. Zeyn, E. Voss, W. Lahmann, C. Weitkamp, and W. Michaelis, “Daytime temperature lidar based on rotational Raman scattering,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Geomatikum Universität Hamburg, Hamburg, Germany, 30 August–2 September 1994.
  3. Yu. F. Arshinov, S. M. Bobrovnikov, D. I. Shelefontyuk, and V. K. Shumskii, “Observations of the boundary atmospheric layer with a combined Raman lidar,” presented at the Third International Symposium on Tropospheric Profiling: Needs and Technologies, Geomatikum Universität Hamburg, Hamburg, Germany, 30 August–2 September 1994.
  4. J. Zeyn, W. Lahmann, and C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996).
  5. D. Nedeljkovic, A. Hauchecorne, and M.-L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
  6. G. von Cossart, J. Fiedler, U. Zahn, K. H. Fricke, V. Nussbaumer, G. Nelke, F. Huebner, A. Hauchecorne, J. P. Marcovici, F. Fassina, D. Nedeljkovic, D. Rees, and N. P. Meredith, “Modern technologies employed in the ALOMAR Rayleigh/Mie/Raman lidar,” in Proceedings of the 12th ESA Symposium on Rocket and Balloon Programmes & Related Research, SP-370 (European Space Agency, Munich, Germany, 1995), pp. 387–394.
  7. U. Wandinger, I. Mattis, A. Ansmann, Yu. Arshinov, S. Bobrovnikov, I. Serikov, “Tropospheric temperature profiling based on detection of Stokes and anti-Stokes rotational Raman Lines at 532 nm,” Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, and G. K. Schwemmer, eds., NASA/CP-1998–207671/PT2 (NASA, Washington, D.C., 1998), pp. 297–299.
  8. A. Behrendt, J. Reichardt, C. Weitkamp, and B. Neidhart, “Sequential tilted interference filter polychromator as a lidar receiver for rotational Raman temperature measurements in the troposphere and stratosphere,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, and G. K. Schwemmer, eds., NASA/CP-1998–207671/PT2 (NASA, Washington, D.C., 1998), pp. 631–634.
  9. D. Waite, S. Frey, F. Immler, M. Mueller, P. Rairoux, M. Rodriguez, B. Stein, C. Wedekind, H. Wille, L. Woeste, and W. Zimmer, “Multiple wavelength rotational Raman lidar for calibration free determination of tropospheric temperatures,” in Nineteenth International Laser Radar Conference, U. N. Singh, S. Ismail, and G. K. Schwemmer, eds., NASA/CP-1998–207671/PT2 (NASA, Washington, D.C., 1998), pp. 425–427.
  10. Yu. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
  11. J. J. Barret, “The use of a Fabry–Perot interferometer for studying rotational Raman spectra of gases,” in Laser Raman Gas Diagnostics, M. Lapp and C. M. Penney, eds. (Plenum, New York, 1973), pp. 63–85.
  12. A. Weber, ed., Raman Spectroscopy of Gases and Liquids (Springer-Verlag, Berlin, 1979), Sec. 3.1.8, pp. 84–85.
  13. V. I. Malyshev, Introduction to Experimental Spectroscopy (Nauka, Moscow, 1979; in Russian).
  14. R. J. Butcher, D. V. Willets, and W. J. Jones, “On the use of a Fabry–Perot etalon for determination of rotational constants of simple molecules—the pure rotational Raman spectra of oxygen and nitrogen,” Proc. R. Soc. London Ser. A 324, 231–245 (1971).
  15. C. L. Korb, G. K. Schwemmer, J. F. Famiglietti, H. Walden, and C. Prasad, “Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles: final report,” NASA Tech. Memo. 104618 (NASA, Washington, D.C., 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited