OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 21 — Jul. 20, 1999
  • pp: 4649–4664

Changes in the Radiometric Sensitivity of SeaWiFS Determined from Lunar and Solar-Based Measurements

Robert A. Barnes, Robert E. Eplee, Jr., Frederick S. Patt, and Charles R. McClain  »View Author Affiliations


Applied Optics, Vol. 38, Issue 21, pp. 4649-4664 (1999)
http://dx.doi.org/10.1364/AO.38.004649


View Full Text Article

Acrobat PDF (276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the lunar and solar measurements used to determine the changes in the radiometric sensitivity of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Radiometric sensitivity is defined as the output from the instrument (or from one of the instrument bands) per unit spectral radiance at the instrument’s input aperture. Knowledge of the long-term repeatability of the SeaWiFS measurements is crucial to maintaining the quality of the ocean scenes derived from measurements by the instrument. For SeaWiFS bands 1–6 (412–670 nm), the change in radiometric sensitivity is less than 0.2% for the period from November 1997 through November 1998. For band 7 (765 nm), the change is approximately 1.5% and for band 8 (865 nm) approximately 5%. The rates of change of bands 7 and 8, which were linear with time for the first eight months of lunar measurements, are now slowing. The scatter in the data points about the trend lines in this analysis is less than 0.3% for all eight SeaWiFS bands. These results are based on monthly measurements of the moon. Daily solar measurements using an onboard diffuser show that the radiometric sensitivities of the SeaWiFS bands have changed smoothly during the time intervals between lunar measurements. Because SeaWiFS measurements have continued past November 1998, the results presented here are considered as a snapshot of the instrument performance as of that date.

© 1999 Optical Society of America

OCIS Codes
(030.5630) Coherence and statistical optics : Radiometry
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.0300) Spectroscopy : Spectroscopy
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6550) Spectroscopy : Spectroscopy, visible

Citation
Robert A. Barnes, Robert E. Eplee, Jr., Frederick S. Patt, and Charles R. McClain, "Changes in the Radiometric Sensitivity of SeaWiFS Determined from Lunar and Solar-Based Measurements," Appl. Opt. 38, 4649-4664 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-21-4649


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. A. Barnes, W. L. Barnes, W. E. Esaias, and C. R. McClain, “Prelaunch acceptance report for the SeaWiFS radiometer,” NASA Tech. Memo 104566 (NASA Goddard Space Flight Center, Greenbelt, Md., 1994), Vol. 22.
  2. W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, and C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980).
  3. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” NASA Tech. Memo. 104566 (NASA Goddard Space Flight Center, Greenbelt, Md., 1992), Vol. 1.
  4. C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, B. G. Mitchell, and R. Barnes, “SeaWiFS calibration and validation plan,” NASA Tech. Memo 104566 (NASA Goddard Space Flight Center, Greenbelt, Md., 1992), Vol. 3.
  5. R. H. Evans and H. R. Gordon, “Coastal Zone Color Scanner system calibration: a retrospective examination,” J. Geophys. Res. 99, 7293–7307 (1994).
  6. M. Viollier, “Radiance calibration of the Coastal Zone Color Scanner: a proposed readjustment,” Appl. Opt. 21, 1142–1145 (1982).
  7. H. R. Gordon, J. W. Brown, O. B. Brown, R. H. Evans, and D. K. Clark, “Nimbus-7 CZCS: reduction of its radiometric sensitivity with time,” Appl. Opt. 22, 3929–3931 (1983).
  8. J. Mueller, “Nimbus-7 CZCS: confirmation of its radiometric sensitivity decay,” Appl. Opt. 24, 1043–1047 (1985).
  9. W. A. Hovis, J. S. Knoll, and G. R. Smith, “Aircraft measurements for calibration of an orbiting spacecraft,” Appl. Opt. 24, 407–410 (1985).
  10. H. R. Gordon and D. K. Clark, “Clear water radiances for atmospheric correction of Coastal Zone Color Scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
  11. H. R. Gordon, “Calibration requirements and methodology for remote sensors viewing the ocean in the visible,” Remote Sens. Environ. 22, 103–126 (1987).
  12. R. A. Barnes and R. E. Eplee, Jr., “The SeaWiFS solar diffuser,” in R. A. Barnes, E-n. Yeh, and R. E. Eplee, Jr., eds., SeaWiFS Calibration Topics, Part 1, NASA Tech. Memo. 104566 (NASA Goddard Space Flight Center, Greenbelt, Md., 1996), Vol. 39.
  13. J. M. Palmer and P. N. Slater, “A ratioing radiometer for use with a solar diffuser,” in Calibration of Passive Remote Observing Optical and Microwave Instrumentation, B. W. Guenther, ed., Proc. SPIE 1493, 106–117 (1991).
  14. J. E. Frederick, R. P. Cebula, and D. F. Heath, “Instrument characterization for detection of long-term changes in stratospheric ozone: an analysis of the SBUV/2 radiometer,” J. Atmos. Oceanic Technol. 4, 472–480 (1986).
  15. J. R. Herman, R. D. Hudson, and G. N. Serafino, “An analysis of the 8 year trend in ozone depletion from alternate models of SBUV instrument degradation,” J. Geophys. Res. 95, 7403–7416 (1990).
  16. H. H. Kieffer, “Photometric stability of the lunar surface,” Icarus 130, 323–327 (1997).
  17. H. H. Kieffer and R. L. Wildey, “Establishing the moon as a spectral radiance standard,” J. Atmos. Oceanic. Technol. 13, 360–375 (1996).
  18. H. H. Kieffer and J. M. Anderson, “Use of the moon for spacecraft calibration,” in Sensors, Systems, and Next Generation Satellite II, H. Fujisada, ed., Proc. SPIE 3498, 325–336 (1998).
  19. R. A. Barnes and A. W. Holmes, “Overview of the SeaWiFS ocean sensor,” in Sensor Systems for the Early Earth Observing System Platforms, W. L. Barnes, ed., Proc. SPIE 1939, 224–232 (1993).
  20. R. A. Barnes, R. E. Eplee, Jr., S. F. Biggar, K. J. Thome, E. F. Zalewski, P. N. Slater, and A. W. Holmes, “The SeaWiFS solar radiation-based calibration and the transfer-to-orbit experiment,” NASA Tech. Memo. 1999–206892 (NASA Goddard Space Flight Center, Greenbelt, Md., 1999), Vol. 5.
  21. R. A. Barnes, A. W. Holmes, and W. E. Esaias, “Stray light in the SeaWiFS radiometer,” NASA Tech. Memo. 104566 (NASA Goddard Space Flight Center, Greenbelt, Md., 1995), Vol. 31.
  22. R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, and T. Svitek, “SeaWiFS prelaunch radiometric calibration and spectral characterization,” NASA Tech. Memo. 104566 (NASA Goddard Space Flight Center, Greenbelt, Md., 1994), Vol. 23.
  23. R. H. Woodward, R. A. Barnes, C. R. McClain, W. E. Esaias, W. L. Barnes, and A. T. Mecherikunnel, “Modeling of the SeaWiFS solar and lunar observations,” NASA Tech. Memo. 104566 (NASA Goddard Space Flight Center, Greenbelt, Md., 1993), Vol. 10.
  24. T. C. Van Flandern and I. F. Pulkkinen, “Low-precision formulae for planetary positions,” Astrophys. J. Suppl. Ser. 41, 391–411 (1979).
  25. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge U. Press, New York, 1993).
  26. P. Helfenstein and J. Veverka, “Photometric properties of lunar terrains derived from Hapke’s equations,” Icarus 72, 342–357 (1987).
  27. A. P. Lane and W. M. Irvine, “Monochromatic phase curves and albedos for the lunar disk,” Astron. J. 78, 267–277 (1973).
  28. R. A. Barnes, R. E. Eplee, Jr., and F. S. Patt, “SeaWiFS measurements of the moon,” in Sensors, Systems, and Next Generation Satellite II, H. Fujisada, ed., Proc. SPIE 3498, 311–324 (1998).
  29. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiances and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
  30. J. L. Mueller and C. C. Trees, “Revised SeaWiFS prelaunch algorithm for the diffuse attenuation coefficient K(490),” in Case Studies for SeaWiFS Calibration and Validation, E-n. Yeh, R. A. Barnes, M. Darzi, L. Kumar, E. A. Early, B. C. Johnson, J. L. Mueller, and C. C. Trees, eds., Part 4, NASA Tech. Memo. 104566 (NASA Goddard Space Flight Center, Greenbelt, Md., 1997), Vol. 41.
  31. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24, 937–24, 953 (1998).
  32. C. R. McClain, M. L. Cleave, G. C. Feldman, W. W. Gregg, S. B. Hooker, and N. Kuring, “Science quality SeaWiFS data for global biospheric research,” Sea Technol. 39, 10–16 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited