OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 21 — Jul. 20, 1999
  • pp: 4665–4670

High capacity optical beam forming for phased arrays with fiber gratings and frequency conversion for beat noise control

Robert A. Minasian and Kamal E. Alameh  »View Author Affiliations


Applied Optics, Vol. 38, Issue 21, pp. 4665-4670 (1999)
http://dx.doi.org/10.1364/AO.38.004665


View Full Text Article

Enhanced HTML    Acrobat PDF (113 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new wavelength division multiplexing grating-based beam-forming architecture for phased arrays that can achieve the minimum possible number of optical interconnects is presented. A reduction in interconnect hardware of 99.6% is obtained for a 512-beam array, which is, as far as we know, the lowest number of interconnects reported to date. Analysis of the ultimate beam capacity limit of the beam former shows that the beat noise interference limitation is the most important factor. We present a new hybrid frequency-converting optical beam former that removes the fundamental beat noise limitation. This frequency downconverts the rf signal to an intermediate frequency before performing the true-time-delay equalization in the optical domain. The resulting advantage of reduced optical bandwidth per channel enables more wavelengths to be used for a given wavelength span, resulting in an increased beam capacity. A greater than sevenfold increase in beam capacity is demonstrated through the use of the frequency conversion technique, with 960 beams synthesized at 12.4 GHz, showing a 99.8% reduction in required interconnects.

© 1999 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4510) Fiber optics and optical communications : Optical communications
(110.5100) Imaging systems : Phased-array imaging systems
(190.2620) Nonlinear optics : Harmonic generation and mixing
(280.5110) Remote sensing and sensors : Phased-array radar

History
Original Manuscript: January 12, 1999
Revised Manuscript: April 22, 1999
Published: July 20, 1999

Citation
Robert A. Minasian and Kamal E. Alameh, "High capacity optical beam forming for phased arrays with fiber gratings and frequency conversion for beat noise control," Appl. Opt. 38, 4665-4670 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-21-4665


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Frigyes, A. J. Seeds, “Optically generated true-time delay in phased array antennas,” IEEE Trans. Microwave Theory Tech. 43, 2378–2386 (1995). [CrossRef]
  2. M. Y. Frankel, R. D. Esman, “True-time delay fiber-optic control of an ultrawideband array transmitter/receiver with multibeam capability,” IEEE Trans. Microwave Theory Tech. 43, 2387–2394 (1995). [CrossRef]
  3. A. P. Goutzoulis, K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1990). [CrossRef] [PubMed]
  4. R. A. Minasian, K. E. Alameh, N. Fourikis, “Wavelength-multiplexed photonic beam-former architecture for microwave phased arrays,” Microwave Opt. Technol. Lett. 10, 84–88 (1995). [CrossRef]
  5. K. E. Alameh, R. A. Minasian, N. Fourikis, “High capacity optical interconnects for phased array beamformers,” J. Lightwave Technol. 13, 1116–1120 (1995). [CrossRef]
  6. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991). [CrossRef]
  7. R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stiwell, D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993). [CrossRef]
  8. M. Y. Frankel, R. D. Esman, M. G. Parent, “Array transmitter/receiver controlled by a true time-delay fiber-optic beamformer,” IEEE Photon. Technol. Lett. 7, 1216–1218 (1995). [CrossRef]
  9. D. T. K. Tong, M. C. Wu, “A novel multiwavelength optically controlled phased array antenna with a programmable dispersion matrix,” IEEE Photon. Technol. Lett. 8, 812–814 (1996). [CrossRef]
  10. R. A. Soref, “Fiber grating prism for true time delay beamsteering,” Fiber Integr. Opt. 15, 325–333 (1996). [CrossRef]
  11. H. Zmuda, R. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using fibre grating prism,” IEEE Photon. Technol. Lett. 9, 241–243 (1997). [CrossRef]
  12. D. T. K. Tong, M. C. Wu, “Programmable dispersion matrix using Bragg fibre grating for optically controlled phased array antennas,” Electron. Lett. 32, 1532–1533 (1996). [CrossRef]
  13. R. A. Minasian, K. E. Alameh, “Optical-fiber grating-based beamforming network for microwave phased arrays,” IEEE Trans. Microwave Theory Tech. 45, 1513–1518 (1997). [CrossRef]
  14. J. E. Roman, M. Y. Frankel, P. J. Matthews, R. D. Esman, “Time-steered array with chirped grating beamformer,” Electron. Lett. 33, 652–653 (1997). [CrossRef]
  15. D. Hunter, R. A. Minasian, “Microwave optical filter using in-fiber Bragg arrays,” IEEE Microwave Guid. Wave Lett. 6, 103–105 (1996). [CrossRef]
  16. A. Molony, L. Zhang, J. A. R. Williams, I. Bennion, C. Edge, J. Fells, “Fiber grating time delay element for phased array antennas,” Electron. Lett. 31, 1485–1486 (1995). [CrossRef]
  17. A. Molony, L. Zhang, J. A. R. Williams, I. Bennion, C. Edge, J. Fells, “Fiber Bragg-grating true time-delay systems: discrete-grating array 3-b delay lines and chirped-grating 6-b delay lines,” IEEE Trans. Microwave Theory Tech. 45, 1527–1530 (1997). [CrossRef]
  18. J. Cruz, B. O. Tiger, M. Andres, B. Gimeno, D. Pastor, J. Capmany, L. Dong, “Chirped fibre Bragg gratingsfor phased array antennas,” Electron. Lett. 33, 545–546 (1997). [CrossRef]
  19. H. Schmuck, “Comparison of optical millimetre-wave system concepts with regard to chromatic dispersion,” Electron. Lett. 31, 1848–1849 (1995). [CrossRef]
  20. G. Yoffe, P. Krug, F. Ouellette, D. Thorncraft, “Temperature-compensated optical-fiber Bragg gratings,” in Conference on Optical Fiber Communications, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 134–135.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited