OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 21 — Jul. 20, 1999
  • pp: 4691–4698

On-line Multicomponent Trace-Gas Analysis With a Broadly Tunable Pulsed Difference-Frequency Laser Spectrometer

Michael Seiter and Markus W. Sigrist  »View Author Affiliations


Applied Optics, Vol. 38, Issue 21, pp. 4691-4698 (1999)
http://dx.doi.org/10.1364/AO.38.004691


View Full Text Article

Acrobat PDF (163 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design and application of a novel automated room-temperature laser spectrometer are reported. The compact instrument is based on difference-frequency generation in bulk LiNbO<sub>3</sub>. The instrument employs a tunable cw external-cavity diode laser (795–825 nm) and a pulsed diode-pumped Nd:YAG laser (1064 nm). The generated mid-IR nanosecond pulses of 50-μW peak power and 6.5-kHz repetition rate, continuously tunable from 3.16 to 3.67 μm, are coupled into a 36-m multipass cell for spectroscopic studies. On-line measurements of methane are performed at concentrations between 200 ppb (parts in 10<sup>9</sup> by mole fraction) and ≈1%, demonstrating a large dynamic range of 7 orders of magnitude. Furthermore computer-controlled multicomponent analysis of a mixture containing five trace gases and water vapor with an overall response time of 90 s at an averaging time of only ≈30 s is reported. A minimum detectable absorption coefficient of 1.1 × 10<sup>−7</sup> cm<sup>−1</sup> has been achieved in an averaging time of 60 s, enabling detection limits in the ppb range for many important trace gases, such as CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, H<sub>2</sub>CO, NO<sub>2</sub>, N<sub>2</sub>O, HCl, HBr, CO, and OCS.

© 1999 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(190.2620) Nonlinear optics : Harmonic generation and mixing
(280.3420) Remote sensing and sensors : Laser sensors
(300.6340) Spectroscopy : Spectroscopy, infrared

Citation
Michael Seiter and Markus W. Sigrist, "On-line Multicomponent Trace-Gas Analysis With a Broadly Tunable Pulsed Difference-Frequency Laser Spectrometer," Appl. Opt. 38, 4691-4698 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-21-4691


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Analysis (Wiley, New York, 1994), Chap. 5.
  2. M. Tacke, “New developments and applications of tunable IR lead salt lasers,” Infrared Phys. Technol. 36, 447–463 (1995).
  3. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
  4. P. Werle, “High sensitivity gas analysis by mid and near infrared diode lasers,” in Proceedings of Fifth International Symposium on Gas Analysis by Tunable Diode Lasers, VDI Berichte 1366 (VDI Verlag GmbH, Düsseldorf, 1998), pp. 1–16.
  5. K. P. Petrov, R. F. Curl, and F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998).
  6. B. Sumpf, D. Rehle, T. Kelz, and H.-D. Kronfeldt, “A tunable diode-laser spectrometer for the MIR region near 7.2 μm applying difference-frequency generation in AgGaSe2,” Appl. Phys. B 67, 369–373 (1998).
  7. M. Seiter and M. W. Sigrist, “Compact gas sensor using a pulsed difference-frequency laser spectrometer,” Opt. Lett. 24, 110–112 (1999).
  8. W. J. Riedel, R. Grisar, U. Klocke, M. Knothe, H. Wolf, P. Schottka, E. Bessey, and N. Pelz, “Analysis of trace gas components in automotive exhaust gas,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Boettner, M. Tacke, and G. Restelli, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 319–324.
  9. M. A. Moeckli, C. Hilbes, and M. W. Sigrist, “Photoacoustic multicomponent gas analysis using a Levenberg–Marquardt fitting algorithm,” Appl. Phys. B 67, 449–458 (1998).
  10. M. A. Moeckli, M. Fierz, and M. W. Sigrist, “Emission factors for ethene and ammonia from a tunnel study with a photoacoustic trace-gas detection system,” Environ. Sci. Technol. 30, 2864–2867 (1996).
  11. M. Seiter, D. Keller, and M. W. Sigrist, “Broadly tunable difference-frequency spectrometer for trace gas detection with noncollinear critical phase matching in LiNbO3,” Appl. Phys. B 67, 351–356 (1998).
  12. Th. Toepfer, K. P. Petrov, Y. Mine, D. Jundt, R. F. Curl, and F. K. Tittel, “Room-temperature mid-infrared laser sensor for trace gas detection,” Appl. Opt. 36, 8042–8049 (1997).
  13. S. T. Yang and S. P. Velsko, “Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 24, 133–135 (1999).
  14. J.-J. Zondy, “The effects of focusing in type-I and type-II difference-frequency generations,” Opt. Commun. 149, 181–206 (1998).
  15. M. Seiter and M. W. Sigrist, “Pulsed, tunable and narrowband mid-infrared laser source based on difference-frequency generation in LiNbO3,” in Digest of Topical Meeting on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1999), pp. 308–310.
  16. L. Goldberg, W. K. Burns, and R. W. McElhanon, “Difference-frequency generation of tunable mid-infrared radiation in bulk periodically poled LiNbO3,” Opt. Lett. 20, 1280–1283 (1995).
  17. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. Chris Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, and R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
  18. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Krieger, Malabar, Fla., 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited