OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 21 — Jul. 20, 1999
  • pp: 4699–4704

Development of an IR tunable diode laser absorption spectrometer for trace humidity measurements at atmospheric pressure

Christopher S. Edwards, Geoffrey P. Barwood, Patrick Gill, Bernd Schirmer, Holger Venzke, and Adrian Melling  »View Author Affiliations


Applied Optics, Vol. 38, Issue 21, pp. 4699-4704 (1999)
http://dx.doi.org/10.1364/AO.38.004699


View Full Text Article

Enhanced HTML    Acrobat PDF (110 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The development of a laser diode absorption spectrometer that uses a strong water vapor absorption at 1393 nm is reported. Three spectroscopic techniques were compared in ≈0.4 m of laboratory air, namely, frequency modulation, wavelength modulation, and two-tone frequency modulation spectroscopy. The first two techniques use a single-frequency modulation at 9.2 GHz and 1 kHz, respectively, generated either by a phase modulator operating at 9.2 GHz or injection current modulation at 1 kHz. The two-tone method requires modulation at two frequencies, in this case 9.19 and 9.21 GHz. It is shown that the two-tone method should provide the highest sensitivity for a trace moisture detection system.

© 1999 Optical Society of America

OCIS Codes
(010.7340) Atmospheric and oceanic optics : Water
(300.0300) Spectroscopy : Spectroscopy
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6380) Spectroscopy : Spectroscopy, modulation

History
Original Manuscript: January 4, 1999
Revised Manuscript: April 14, 1999
Published: July 20, 1999

Citation
Christopher S. Edwards, Geoffrey P. Barwood, Patrick Gill, Bernd Schirmer, Holger Venzke, and Adrian Melling, "Development of an IR tunable diode laser absorption spectrometer for trace humidity measurements at atmospheric pressure," Appl. Opt. 38, 4699-4704 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-21-4699


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. R. Stallard, L. H. Espinoza, R. K. Rowe, M. J. Garcia, T. M. Niemczyk, “Trace water vapor detection in nitrogen and corrosive gases by FTIR spectroscopy,” J. Electrochem. Soc. 142, 2777–2782 (1995). [CrossRef]
  2. J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996). [CrossRef]
  3. S.-Q. Wu, H. Masusaki, Y. Ishihara, K. Matsumoto, T. Kimishima, J. Morishita, H. Huze, N. Takeuchi, “Quantitative analysis of trace moisture in N2 and NH3 gases with dual-cell near-infrared diode laser absorption spectroscopy,” Anal. Chem. 70, 3315–3321 (1998). [CrossRef] [PubMed]
  4. P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tunable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994). [CrossRef]
  5. D. C. Hovde, C. A. Parsons, “Wavelength modulation detection of water vapor with a vertical cavity surface-emitting laser,” Appl. Opt. 36, 1135–1138 (1997). [CrossRef] [PubMed]
  6. D. T. Cassidy, “Trace gas detection using 1.3-µm InGaAsP diode laser transmitter modules,” Appl. Opt. 27, 610–614 (1988). [CrossRef] [PubMed]
  7. C. B. Carlisle, D. E. Cooper, “Tunable diode laser frequency modulation spectroscopy through an optical fiber: high-sensitivity detection of water vapor,” Appl. Phys. Lett. 56, 805–807 (1990). [CrossRef]
  8. T. J. Johnson, F. G. Wienhold, J. P. Burrows, G. W. Harris, “Frequency modulation spectroscopy at 1.3 µm using InGaAsP lasers: a prototype field instrument for atmospheric chemistry research,” Appl. Opt. 30, 407–413 (1991). [CrossRef] [PubMed]
  9. N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurements of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser,” Appl. Opt. 31, 3409–3415 (1992). [CrossRef] [PubMed]
  10. J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994). [CrossRef]
  11. Z. Bozóki, J. Sneider, G. Szabó, A. Miklós, M. Serényi, G. Nagy, M. Fehér, “Intracavity photoacoustic gas detection with an external cavity diode laser,” Appl. Phys. B 63, 399–401 (1996). [CrossRef]
  12. J. Roths, R. Busen, “Development of a laser in situ airborne hygrometer (LISAH),” Infrared Phys. Technol. 37, 33–38 (1996). [CrossRef]
  13. J. A. Silver, D. C. Hovde, “Near-infrared diode laser hygrometer for airborne measurements,” in Proceedings of the Ninth Symposium on Meteorological Observations and Instrumentation (American Meteorological Society, 46 Beacon Street, Boston, Mass., 1995), pp. 311–316.
  14. J. A. Silver, D. C. Hovde, “A comparison of near-infrared diode laser techniques for airborne hygrometry,” J. Atmos. Ocean. Technol. 15, 29–35 (1998). [CrossRef]
  15. D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near IR diode laser hygrometer,” Appl. Phys. B 67, 275–282 (1998). [CrossRef]
  16. G. C. Bjorklund, “Frequency modulation spectroscopy,” Opt. Lett. 5, 15–17 (1980). [CrossRef]
  17. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  18. G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986). [CrossRef]
  19. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynterm, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987). [CrossRef] [PubMed]
  20. R. Kästle, R. Grisar, M. Tacke, D. Dornisch, C. Scholz, “Using diode laser spectroscopy to monitor gas purity,” Microcontamination 9(11), 27–31 (1991).
  21. W. J. Kessler, M. G. Allen, S. J. Davis, P. A. Mulhall, J. A. Polex, “Near-IR diode-laser-based sensor for parts-per-billion-level water vapor in industrial gases,” in Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring, M. Fallaki, N. F. Hartman, R. J. Nordstrom, J. M. Cobb, T. R. Todd, J. G. Edwards, eds., Proc. SPIE3537, 139–149 (1999). [CrossRef]
  22. J. L. Hall, H. G. Robinson, T. Baer, L. Hollberg, “The lineshapes of sub-Doppler resonances observable with FM side-band (optical heterodyne) laser techniques,” in Advances in Laser Spectroscopy, F. T. Arrechi, F. Strumia, H. Walther, eds., NATO Advanced Science Institutes Series (Plenum, New York, 1983). [CrossRef]
  23. H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys. 35, 1708–1710 (1961). [CrossRef]
  24. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965). [CrossRef]
  25. X. Zhu, D. T. Cassidy, “Modulation spectroscopy with a semiconductor diode laser by injection-current modulation,” J. Opt. Soc. Am. B 14, 1945–1950 (1997). [CrossRef]
  26. D. E. Cooper, R. E. Warren, “Two-tone optical heterodyne spectroscopy with diode lasers: theory of line shapes and experimental results,” J. Opt. Soc. Am. B 4, 470–480 (1987). [CrossRef]
  27. P. Werle, F. Slemr, “Signal-to-noise ratio analysis in laser absorption spectrometers using optical multipass cells,” Appl. Opt. 30, 430–434 (1991). [CrossRef] [PubMed]
  28. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992). [CrossRef] [PubMed]
  29. F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B. 56, 118–122 (1993). [CrossRef]
  30. D. E. Cooper, R. E. Warren, “Frequency modulation with lead-salt diode lasers: a comparison of single-tone and two-tone methods,” Appl. Opt. 26, 3726–3732 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited