OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 21 — Jul. 20, 1999
  • pp: 4711–4719

Highly Dispersive Mirror in Ta2O5/SiO2 for Femtosecond Lasers Designed by Inverse Spectral Theory

Steven R. A. Dods, Zhigang Zhang, and Mutsuo Ogura  »View Author Affiliations

Applied Optics, Vol. 38, Issue 21, pp. 4711-4719 (1999)

View Full Text Article

Acrobat PDF (708 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A highly dispersive mirror for dispersion compensation in femtosecond lasers is designed by inverse spectral theory. The design of a simple quarter-wave Bragg reflector can be modified by moving the poles in the optical impedance found in the photonic stop band. These spectral quantities are used as independent variables in the numerical optimization because they have no effect on the location of the photonic stop band, and so the design requirements to obtain a high reflectivity and a specific delay spectrum are decoupled. The design was fabricated by ion-beam sputtering. A group delay dispersion of −300 fs2 was measured over a bandwidth of 28 nm, with a remaining reflectivity of greater than 99% in this range. The mirrors were used to make two Ti:sapphire lasers with 10- and 4-mm-long crystals, both of which generated near-transform-limited pulses of 35-fs duration. Because of the high dispersion of the mirrors, the laser cavities needed only five and three bounces from the mirrors, thus keeping reflection losses to a minimum.

© 1999 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(140.3580) Lasers and laser optics : Lasers, solid-state
(310.1860) Thin films : Deposition and fabrication
(310.6860) Thin films : Thin films, optical properties
(320.0320) Ultrafast optics : Ultrafast optics
(320.7090) Ultrafast optics : Ultrafast lasers

Steven R. A. Dods, Zhigang Zhang, and Mutsuo Ogura, "Highly Dispersive Mirror in Ta2O5/SiO2 for Femtosecond Lasers Designed by Inverse Spectral Theory," Appl. Opt. 38, 4711-4719 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. Torizuka and M. Yamashita, “Third-order dispersion in a passively mode-locked continuous-wave dye laser,” J. Opt. Soc. Am. B 8, 2442–2448 (1991).
  2. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipöcs, “Prismless passively mode-locked femtosecond Cr:LiSGaF laser,” Opt. Lett. 21, 1165–1167 (1996).
  3. D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, “All-in-one dispersion-compensating saturable absorber mirror for compact femtosecond laser sources,” Opt. Lett. 21, 486–488 (1996).
  4. M. Yamashita, K. Torizuka, and T. Sato, “A chirp-compensation technique using incident angle changes of cavity mirrors in a femtosecond pulse laser,” IEEE J. Quantum Electron. 23, 2005–2007 (1987).
  5. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994).
  6. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22, 831–833 (1997).
  7. R. Szipöcs and A. Köházi-Kis, “Theory and design of chirped dielectric laser mirrors,” Appl. Phys. B 65, 115–135 (1997).
  8. I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, and T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett. 22, 1009–1011 (1997).
  9. J. A. Dobrowolski and R. A. Kemp, “Refinements of optical multilayer systems with different optimization procedures,” Appl. Opt. 29, 2876–2893 (1990).
  10. E. J. Mayer, J. Möbius, A. Euteneuer, W. W. Rühle, and R. Szipöcs, “Ultrabroadband chirped mirrors for femtosecond lasers,” Opt. Lett. 22, 528–530 (1997).
  11. E. Delano, “Fourier synthesis of multilayer filters,” J. Opt. Soc. Am. 57, 1529–1533 (1967).
  12. L. Sossi, “A method for the synthesis of multilayer interference coatings,” Eesti NSV Tead. Akad. Toim. Fuus. Mat. 23, 229–237 (1974).
  13. L. Sossi, “On the synthesis of interference coatings,” Eesti NSV Tead. Akad. Toim. Fuus. Mat. 26, 28–36 (1977).
  14. P. G. Verly, “Design of inhomogeneous and quasi-inhomogeneous optical coatings at the NRC,” in Inhomogeneous and Quasi-Homogeneous Optical Coatings, J. A. Dobrowolski and P. G. Verly, eds., Proc. SPIE 2046, 36–42 (1993).
  15. R. Szipöcs and A. Köházi-Kis, “Design of dielectric high reflectors for dispersion control in femtosecond lasers,” in Optical Interference Coatings, F. Abeles, ed., Proc. SPIE 2253, 140–149 (1994).
  16. I. Kay and H. E. Moses, Inverse Scattering Papers: 1955–1963 (Math Sciences, Brookline, Mass., 1982).
  17. K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory (Springer-Verlag, New York, 1989).
  18. J. E. Roman and K. A. Winick, “Waveguide grating filters for dispersion compensation and pulse compression,” IEEE J. Quantum Electron. 29, 975–982 (1993).
  19. S. R. A. Dods and M. Ogura, “Dispersive mirror in AlGaAs designed by inverse spectral theory,” Appl. Opt. 36, 7741–7751 (1997).
  20. A. Ueda, H. Yoneda, K. Ueda, K. Waseda, and M. Ohashi, “Two-dimensional measurement of optical parameters of superhigh-quality mirrors,” Laser Phys. 8, 697–702 (1998).
  21. J. A. Dobrowolski and S. H. C. Piotrowski, “Refractive index as a variable in the numerical design of optical thin film systems,” Appl. Opt. 21, 1502–1511 (1982).
  22. V. Laude and P. Tournois, “Stochastic optimization of broadband dispersion controlled mirrors,” in Conference on Lasers and Electro-Optics Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 156–157.
  23. G. Tempea, F. Krausz, C. Speilmann, and K. Ferencz, “Dispersion control over 150 THz with chirped dielectric mirrors,” IEEE J. Sel. Top. Quantum Electron. 4, 193–196 (1998).
  24. N. Matuschek, F. X. Kärtner, and U. Keller, “Theory of double chirped mirrors,” IEEE J. Sel. Top. Quantum Electron. 4, 197–208 (1998).
  25. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipöcs, “14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22, 1716–1718 (1997).
  26. K. Naganuma, K. Mogi, and H. Yamada, “Group delay measurement using the Fourier transform of an interferometric cross correlation generated by white light,” Opt. Lett. 15, 393–395 (1990).
  27. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).
  28. T. Brabec, Ch. Spielmann, and F. Krausz, “Limits of pulse shortening in solitary lasers,” Opt. Lett. 17, 748–750 (1992).
  29. F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, and A. J. Schmidt, “Femtosecond solid state lasers,” IEEE J. Quantum Electron. 28, 2097–2122 (1992).
  30. Z. Zhang and T. Yagi, “Observation of group delay dispersion as a function of the pulse width in a mode locked Ti:sapphire laser,” Appl. Phys. Lett. 63, 2993–2995 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited