OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 21 — Jul. 20, 1999
  • pp: 4720–4724

Surface damage of extreme-ultraviolet gratings exposed to high-energy 20-fs laser pulses

Paolo Ceccherini, Maria-G. Pelizzo, Paolo Villoresi, Sandro De Silvestri, Mauro Nisoli, and Salvatore Stagira  »View Author Affiliations

Applied Optics, Vol. 38, Issue 21, pp. 4720-4724 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (472 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The damage fluences of gratings for diffraction of ultraviolet radiation, which are used in high-order harmonic generation experiments, have been measured with respect to the fundamental laser beam radiation. We have tested gold and platinum coatings of 40- and 50-nm thickness, respectively, deposited onto fused-silica substrates, after irradiation of high-energy, spatially filtered, 20-fs laser pulses at 780 nm. The damage appears at a fluence of ∼0.3 J cm-2 for gold and at a fluence of ∼0.4 J cm-2 for platinum. Scanning electron microscopy of the irradiated regions revealed different damaging mechanisms for the two coatings.

© 1999 Optical Society of America

OCIS Codes
(230.1950) Optical devices : Diffraction gratings
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.1820) Other areas of optics : Damage

Original Manuscript: November 30, 1998
Revised Manuscript: March 12, 1999
Published: July 20, 1999

Paolo Ceccherini, Maria-G. Pelizzo, Paolo Villoresi, Sandro De Silvestri, Mauro Nisoli, and Salvatore Stagira, "Surface damage of extreme-ultraviolet gratings exposed to high-energy 20-fs laser pulses," Appl. Opt. 38, 4720-4724 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. For a review see C. P. J. Barty, W. White, W. Sibbett, R. Trebino, eds., Ultrafast Optics, IEEE J. Sel. Top. Quantum Electron.4 (1998).
  2. M. Nisoli, S. De Silvestri, O. Svelto, “Generation of high energy 10-fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996). [CrossRef]
  3. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipocs, K. Ferencz, Ch. Spielmann, S. Sartania, F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997). [CrossRef] [PubMed]
  4. S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, “Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate,” Opt. Lett. 22, 1526–1528 (1997). [CrossRef]
  5. A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, C. K. Rhodes, “Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases,” J. Opt. Soc. Am. B 4, 595–601 (1987). [CrossRef]
  6. A. L’Huillier, K. Schafer, K. Kulander, “High-order harmonic generation in xenon at 1064 nm: the role of phase matching,” Phys. Rev. Lett. 66, 2200–2203 (1991). [CrossRef]
  7. A. L’Huillier, P. Balcou, “High-order harmonic generation in rare gases with a 1-ps 1053-nm laser,” Phys. Rev. Lett. 70, 774–777 (1993). [CrossRef] [PubMed]
  8. J. Macklin, J. Kmetec, C. Gordon, “High-order harmonic generation using intense femtosecond pulses,” Phys. Rev. Lett. 70, 766–769 (1993). [CrossRef] [PubMed]
  9. Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, H. C. Kapteyn, “Generation of coherent soft x rays at 2.7 nm using high harmonics,” Phys. Rev. Lett. 79, 2967–2970 (1997). [CrossRef]
  10. Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnurer, C. Kan, M. Lenzner, P. Wobrauschek, F. Krausz, “Generation of coherent x-rays in the water window using 5-femtosecond laser pulses,” Science 278, 661–664 (1997). [CrossRef]
  11. J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).
  12. M. Bass, ed., Handbook of Optics (McGraw-Hill, New York, 1995).
  13. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998). [CrossRef]
  14. M. C. Hugon, F. Varniere, B. Agius, M. Froment, C. Arena, J. Bessot, “Stresses, microstructure and resistivity of thin tungsten films deposited by RF magnetron sputtering,” Appl. Surf. Sci. 38, 269–285 (1989). [CrossRef]
  15. R. D. Boyd, J. A. Britten, D. E. Decker, B. W. Shore, B. C. Stuart, M. D. Perry, L. Li, “High-efficiency metallic diffraction gratings for laser applications,” Appl. Opt. 34, 1697–1706 (1995). [CrossRef] [PubMed]
  16. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shoreand, M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1996). [CrossRef]
  17. P. V. Corkum, F. Brunel, N. K. Sherman, T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988). [CrossRef] [PubMed]
  18. S. D. Brorson, J. G. Fujimoto, E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold films,” Phys. Rev. Lett. 59, 1962–1965 (1987). [CrossRef] [PubMed]
  19. H. E. Elsayed-Ali, T. Juhasz, G. O. Smith, W. E. Bron, “Femtosecond thermoreflectivity and thermotransmittivity of polycrystalline and single-crystalline gold films,” Phys. Rev. B 43, 4488–4491 (1991). [CrossRef]
  20. V. V. Golovlev, Yu. A. Matveets, A. M. Sanov, V. S. Letokhov, “Relaxation of the electron temperature in a copper film excited by femtosecond laser pulses,” JEPT Lett. 55, 450–454 (1992).
  21. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998). [CrossRef]
  22. C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984). [CrossRef]
  23. M. Nisoli, V. Pruneri, S. De Silvestri, V. Magni, A. M. Gallazzi, C. Romanoni, G. Zerbi, G. Zotti, “Ultrafast non-linear optical response and acoustic phonon generation in poly (alkoxy-thiophene) film with regioregular structure,” Chem. Phys. Lett. 220, 64–69 (1994). [CrossRef]
  24. The adhesion energy of gold and platinum on sapphire is 0.8 and 2.3 J/m2, respectively. See M. Lipkin, J. N. Israelachvili, D. R. Clarke, “Estimating the metal-ceramic van der Waals adhesion energy,” Philos. Mag. A 76, 715–718 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited