OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 22 — Aug. 1, 1999
  • pp: 4784–4789

Windows in ellipsometry measurements

Gerald E. Jellison, Jr.  »View Author Affiliations

Applied Optics, Vol. 38, Issue 22, pp. 4784-4789 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (95 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of windows or lenses placed between the polarization-state generator and the polarization-state detector in a general ellipsometry measurement is examined. It is found that three parameters are required for describing the effects of the window retardation on the ellipsometry measurements. Two of these window parameters can be measured at the same time as the sample parameters if the sample is isotropic, but the third window parameter cannot be determined independently and must be measured separately. If the sample is anisotropic, then none of the windows parameters can be measured independently at the same time as the sample parameters. An example is given in which the strain-induced retardation in fused-silica focusing lenses is measured with a two-modulator generalized ellipsometer and the results are used to correct the sample data.

© 1999 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization

Original Manuscript: December 14, 1998
Revised Manuscript: April 6, 1999
Published: August 1, 1999

Gerald E. Jellison, "Windows in ellipsometry measurements," Appl. Opt. 38, 4784-4789 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. A. Studna, D. E. Aspnes, L. T. Flores, B. J. Wilkens, J. P. Harbison, R. E. Ryan, “Low-retardance fused-quartz window for real-time optical applications in ultrahigh vacuum,” J. Vac. Sci. Technol. A 7, 3291–3294 (1989). [CrossRef]
  2. R. W. Collins, “Automatic rotating element ellipsometers: calibration, operation, and real-time applications,” Rev. Sci. Instrum. 61, 2029–2062 (1990). [CrossRef]
  3. R. F. Spanier, R. G. Wolf, R. M. Loiterman, M. E. Haller, “Simultaneous multiple angle/multiple wavelength ellipsometer and method,” U.S. patent5,166,752 (24November1992).
  4. F. L. McCrackin, “Analyses and corrections of instrumental errors in ellipsometry,” J. Opt. Soc. Am. 60, 57–63 (1970). [CrossRef]
  5. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  6. J. M. M. de Nijs, A. van Silfhout, “Systematic and random errors in rotating-analyzer ellipsometry,” J. Opt. Soc. A. 5, 773–781 (1988). [CrossRef]
  7. G. E. Jellison, F. A. Modine, “Two-modulator generalized ellipsometry: theory,” Appl. Opt. 36, 8190–8198 (1997); “Two-modulator generalized ellipsometry: experiment and calibration,” Appl. Opt. 36, 8184–8189 (1997). [CrossRef]
  8. D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990).
  9. R. A. Chipman, “Polarimetry,” in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 22.
  10. R. Barakat, “Bilinear constraints between elements of the 4 × 4 Mueller-Jones transfer matrix of polarization theory,” Opt. Commun. 38, 159–161 (1981). [CrossRef]
  11. D. G. M. Anderson, R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix,” J. Opt. Soc. Am. A 11, 2305–2319 (1994). [CrossRef]
  12. G. E. Jellison, “Spectroscopic ellipsometry data analysis: measured versus calculated quantities,” Thin Solid Films 313–314, 33–39 (1998).
  13. B. Drevillon, J. Perrin, R. Marbot, A. Violet, J. L. Dalby, “Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis,” Rev. Sci. Instrum. 53, 969–977 (1982). [CrossRef]
  14. G. E. Jellison, F. A. Modine, “Two-channel polarization modulation ellipsometer,” Appl. Opt. 29, 959–974 (1990). [CrossRef] [PubMed]
  15. R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2, 148–150 (1978). [CrossRef] [PubMed]
  16. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31, 6676–6683 (1992). [CrossRef] [PubMed]
  17. J. Lee, P. I. Rovira, I. An, R. W. Collins, “Rotating-compensator multichannel ellipsometry: applications for real time Stokes vector spectroscopy of thin film growth,” Rev. Sci. Instrum. 69, 1800–1810 (1998). [CrossRef]
  18. G. E. Jellison, F. A. Modine, L. A. Boatner, “Measurement of the optical functions of uniaxial materials by two-modulator generalized ellipsometry: rutile (TiO2),” Opt. Lett. 22, 1808–1810 (1997). [CrossRef]
  19. G. E. Jellison, L. A. Boatner, “Optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 58, 3586–3589 (1998). [CrossRef]
  20. G. E. Jellison, J. O. Ramey, L. A. Boatner, “The optical functions of BiI3 as measured by generalized ellipsometry,” Phys. Rev. B 59, 9718–9721 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited