OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 22 — Aug. 1, 1999
  • pp: 4821–4830

Fiber Distributed-Feedback Lasers Used as Acoustic Sensors in Air

Sigurd Weidemann Løvseth, Jon Thomas Kringlebotn, Erlend Rønnekleiv, and Kjell Bløtekjær  »View Author Affiliations

Applied Optics, Vol. 38, Issue 22, pp. 4821-4830 (1999)

View Full Text Article

Acrobat PDF (167 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Contributions to the acoustic signal sensitivity of fiber distributed-feedback (DFB) lasers in air are investigated both theoretically and experimentally. The theoretical results show that the dominant contribution to the laser frequency shift comes from adiabatic temperature shifts in the surrounding air at lower frequencies and from pressure at higher frequencies. The transition frequency was found to be between 5 and 20 kHz, depending on the elastic boundary conditions of the fiber laser. The acoustically induced frequency shifts of two fiber DFB lasers were measured, and the sensitivities varied from 0.61 MHz/Pa at a 100-Hz acoustic frequency to 0.34 kHz/Pa at a 15-kHz acoustic frequency.

© 1999 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.3510) Lasers and laser optics : Lasers, fiber

Sigurd Weidemann Løvseth, Jon Thomas Kringlebotn, Erlend Rønnekleiv, and Kjell Bløtekjær, "Fiber Distributed-Feedback Lasers Used as Acoustic Sensors in Air," Appl. Opt. 38, 4821-4830 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber-optic hydrophone,” J. Acoust. Soc. Am. 62, 1302–1304 (1977).
  2. A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Opt. Fiber Technol. 2, 291–316 (1996).
  3. S. Knudsen and K. Bløtekjær, “An ultrasonic fiber-optic hydrophone incorperating a push–pull transducer in a Sagnac interferometer,” J. Lightwave Technol. 12, 1696–1700 (1994).
  4. S.-T. Shih, “Wide-band polarization-insensitive fiber optic acoustic sensors,” Opt. Eng. 37, 968–976 (1998).
  5. W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula and E. Udd, eds., Proc. SPIE 1169, 98–107 (1989).
  6. A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
  7. N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050–1054 (1997).
  8. N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Ultrasonic field and temperature sensor based on short in-fibre Bragg gratings,” Electron. Lett. 34, 1139–1140 (1998).
  9. N. Takahashi, A. Hirose, and S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev. 4, 691–694 (1997).
  10. M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
  11. K. P. Koo and A. D. Kersey, “Noise and cross talk of a 4-element serial fiber laser sensor array,” in Optical Fiber Communication Conference, Vol. 2 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), paper ThP2, pp. 266–267.
  12. K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensor systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243–1249 (1995).
  13. J. Hübner, P. Varming, and M. Kristiansen, “Five wavelength DFB fiber laser source for WDM systems,” Electron. Lett. 33, 139–140 (1997).
  14. E. Rønnekleiv and S. W. Løvseth, “Stability of distributed feedback fiber lasers with optical feedback,” in Thirteenth International Conference on Optical Fiber Sensors, B. Y. Kim and K. Hotate, eds., Proc. SPIE 3746, 466–469 (1999).
  15. J. T. Kringlebotn, J. Archambault, L. Reekie, and D. N. Payne, “Er+3:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19, 2101–2103 (1994).
  16. P. M. Morse and K. U. Ingard, Theoretical Acoustics (Princeton U. Press, Princeton, N.J., 1986).
  17. P. C. Riedi, “First Law of Thermodynamics,” in An Introduction to Thermodynamics, Statistical Mechanics and Kinetic Theory (MacMillan, London, 1976), Chaps. 2; P. C. Riedi, “Second Law of Thermodynamics,” in An Introduction to Thermodynamics, Statistical Mechanics and Kinetic Theory (MacMillan, London, 1976), Chap. 3.
  18. F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 3rd ed. (Wiley, New York, 1990).
  19. S. Takahashi and S. Shibita, “Thermal variation of attenuiation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1978).
  20. A. Bertholds and R. Dändliker, “Determination of the individual strain-optic coefficient in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988).
  21. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).
  22. N. Lagakos, J. H. Cole, and J. A. Bucaro, “Ultrasonic sensitivity of coated fibers,” J. Lightwave Technol. 1, 495–497 (1983).
  23. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
  24. S. Knudsen, “Fiber-optic acoustic sensors based on the Michelson and Sagnac interferometers: responsivity and noise properties,” Ph.D. dissertation (Department of Physical Electronics, University of Trondheim, Trondheim, Norway, 1996).
  25. E. Rønnekleiv, M. Ibsen, M. N. Zervas, and R. I. Laming, “Characterization of intensity distribution in symmetric and asymmetric fiber DFB lasers,” in Conference on Lasers and Electro-Optics, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 80.
  26. O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38, 1953–1958 (1999).
  27. S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a horizontal cylinder,” Int. J. Heat Mass Transfer 18, 1049–1053 (1975).
  28. S. Nakai and T. Okazaki, “Heat transfer from a horizontal circular wire at small Reynolds and Grashof numbers—I: pure convection,” Int. J. Heat Mass Transfer 18, 387–396 (1975).
  29. S. W. Churchill and M. Bernstein, “A correlating equation for forced convection from gases and liquids to a circular cylinder in cross flow,” J. Heat Transfer 99, 300–306 (1977).
  30. V. T. Morgan, “The overall convective heat transfer from smooth circular cylinders,” in Advances in Heat Transfer, T. F. Irvine and J. P. Hartnett, eds. (Academic, New York, 1975), Vol. 11, pp. 199–264.
  31. J. F. Nye, Physical Properties of Crystals (Oxford U. Press, Oxford, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited