OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 22 — Aug. 1, 1999
  • pp: 4861–4869

Experimental confirmation of the optical-trapping properties of cylindrical objects

Robert C. Gauthier, Mike Ashman, and Chander P. Grover  »View Author Affiliations

Applied Optics, Vol. 38, Issue 22, pp. 4861-4869 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (1103 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A sophisticated modeling program was used recently to predict the trapping and the manipulation properties of elongated cylindrical objects in the focal region of a high-intensity laser beam. On the basis of the model, the cylinders should align their longest diagonal dimension with the propagation axis of the laser beam and follow the beam when it is displaced transverse to the cylinder’s central axis. Experimental confirmation of the cylinder’s behavior is presented and confirms the suitability of the enhanced ray-optics approach to modeling micrometer-scale objects in optical-trap environments.

© 1999 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(230.3990) Optical devices : Micro-optical devices
(350.3950) Other areas of optics : Micro-optics

Original Manuscript: January 28, 1999
Revised Manuscript: May 3, 1999
Published: August 1, 1999

Robert C. Gauthier, Mike Ashman, and Chander P. Grover, "Experimental confirmation of the optical-trapping properties of cylindrical objects," Appl. Opt. 38, 4861-4869 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  2. R. Lewis, “Special delivery of sperm,” Photon. Spectra July, 44–45 (1996).
  3. S. C. Kuo, M. Sheetz, “Optical tweezers in cell biology,” Trends Cell Biol. 2, 116–118 (1992). [CrossRef] [PubMed]
  4. W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Berns, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990). [CrossRef]
  5. Y. Tadir, W. H. Wright, O. Vafa, T. Ord, R. H. Asch, M. W. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989). [PubMed]
  6. R. M. P. Doornbos, M. Scaeffer, A. G. Hoekstra, P. M. Sloot, B. G. de Grooth, J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35, 729–734 (1996). [CrossRef] [PubMed]
  7. T. T. Perkins, D. E. Smith, R. G. Larson, S. Chu, “Stretching of a single tethered polymer in a uniform flow,” Science 268, 83–87 (1995). [CrossRef] [PubMed]
  8. K. T. Gahagan, G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996). [CrossRef] [PubMed]
  9. L. Malmqvist, H. M. Hertz, “Two-color trapped-particle optical microscopy,” Opt. Lett. 19, 853–855 (1994). [CrossRef] [PubMed]
  10. E. Almaas, I. Brevik, “Radiation forces on a micrometer-sized sphere in an evanescent field,” J. Opt. Soc. Am. B 12, 2429–2438 (1995). [CrossRef]
  11. S. Sato, H. Inaba, “Second-harmonic and sum-frequency generation from optically trapped KTiOPO4 microscopic particles by use of Nd:YAG and Ti:Al2O3 lasers,” Opt. Lett. 19, 927–929 (1994). [CrossRef] [PubMed]
  12. E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773–2779 (1997). [CrossRef]
  13. R. C. Gauthier, “Optical trapping: a tool to assist in micro-machining,” Opt. Laser Technol. 29, 389–399 (1997). [CrossRef]
  14. D. R. Koehler, “Optical actuation of micromechanical components,” J. Opt. Soc. Am. B 14, 2197–2203 (1997). [CrossRef]
  15. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  16. R. Gussgard, T. Lindmo, I. Brevik, “Calculation of the trapping force in a strongly focused laser beam,” J. Opt. Soc. Am. B 9, 1992–1930 (1992). [CrossRef]
  17. K. F. Ren, G. Gréhan, G. Gouesbet, “Prediction of the reverse radiation pressure by generalized Lorentz–Mie theory,” Appl. Opt. 35, 2702–2710 (1996). [CrossRef] [PubMed]
  18. K. Visscher, G. J. Brakenhoff, “Theoretical study of optically induced forces on spherical particles in a single beam trap. II: Mie scatterers,” Optik (Stuttgart) 90, 57–60 (1992).
  19. W. H. Wright, G. J. Sonek, W. M. Berns, “Parametric study of forces on microspheres held in optical tweezers,” Appl. Opt. 33, 1735–1748 (1995). [CrossRef]
  20. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef] [PubMed]
  21. E. Sidick, S. D. Collins, A. Knoesen, “Optical tweezers based on near infrared diode laser,” J. Biomed. Opt. 2, 332–339 (1997). [CrossRef]
  22. R. Roosen, B. Delaunay, C. Imbert, “Etude de la pression de radiation exercée par un faisceau lumineux sur une sphère réfringente,” J. Opt. (Paris) 8, 181–187 (1977). [CrossRef]
  23. E. Higurashi, H. Tanaka, O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994). [CrossRef]
  24. R. C. Gauthier, “Ray optics model and numerical computations for the radiation pressure micromotor,” Appl. Phys. Lett. 67, 2269–2271 (1995). [CrossRef]
  25. R. C. Gauthier, “Theoretical model for an improved radiation pressure micromotor,” Appl. Phys. Lett. 69, 2015–2017 (1996). [CrossRef]
  26. R. C. Gauthier, “Trapping model for the low-index ring-shaped micro-object in a focused lowest-order Gaussian laser-beam profile,” J. Opt. Soc. Am. B 14, 782–789 (1997). [CrossRef]
  27. R. C. Gauthier, M. Ashman, “Simulated dynamic behavior of single and multiple spheres in the trap region of focused laser beams,” Appl. Opt. 37, 6421–6431 (1998). [CrossRef]
  28. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14, 3323–3333 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited