OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 22 — Aug. 1, 1999
  • pp: 4930–4938

Measurement of the Fluorescence Lifetime in Scattering Media by Frequency-Domain Photon Migration

Ralf H. Mayer, Jeffery S. Reynolds, and Eva M. Sevick-Muraca  »View Author Affiliations


Applied Optics, Vol. 38, Issue 22, pp. 4930-4938 (1999)
http://dx.doi.org/10.1364/AO.38.004930


View Full Text Article

Acrobat PDF (148 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method is presented to determine fluorescence decay lifetimes within tissuelike scattering media. Fluorescence lifetimes are determined for micromolar concentrations of the dyes 3,3′-Diethylthiatricarbocyanine Iodide and Indocyanine Green by frequency-domain investigations of light propagating in turbid media. Dual-wavelength photon-migration measurements that use intensity-modulated sources at excitation and emission wavelengths of the fluorophores provide optical parameters of the media as well as fluorescence properties of the dyes. The deduction of fluorescence lifetimes requires no calibration with reference fluorophores, and the results are shown to be independent of dye concentration.

© 1999 Optical Society of America

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.5280) Medical optics and biotechnology : Photon migration
(170.7050) Medical optics and biotechnology : Turbid media
(260.2510) Physical optics : Fluorescence
(290.4210) Scattering : Multiple scattering
(300.6340) Spectroscopy : Spectroscopy, infrared

Citation
Ralf H. Mayer, Jeffery S. Reynolds, and Eva M. Sevick-Muraca, "Measurement of the Fluorescence Lifetime in Scattering Media by Frequency-Domain Photon Migration," Appl. Opt. 38, 4930-4938 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-22-4930


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
  2. G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
  3. A. Pradhan, B. B. Das, K. M. Yoo, J. Cleary, R. Prudente, E. Celmer, and R. R. Alfano, “Time-resolved UV photoexcited fluorescence kinetics from malignant and nonmalignant human breast tissues,” Lasers Life Sci. 4, 225–234 (1992).
  4. S. Andersson-Engels, S. Johansson, U. Stenram, K. Svanberg, and S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. B 4, 363–369 (1990).
  5. D. B. Tata, M. Foresti, J. Cordero, and P. Tomashefpsky, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
  6. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Biochemistry 89, 1271–1275 (1992).
  7. D. L. Meadows and J. S. Schultz, “Design, manufacture and characterization of an optical fibre glucose affinity sensor based on an homogenous fluorescence energy transfer assay system,” Anal. Chim. Acta 280, 21–30 (1993).
  8. J. R. Lakowicz and B. Maliwal, “Optical sensing of glucose using phase-modulation fluorimetry,” Anal. Clin. Acta 271, 155–164 (1993).
  9. M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
  10. E. M. Sevick and C. L. Burch, “Origin of phosphorescence signals reemitted from tissues,” Opt. Lett. 19, 1928–1930 (1994).
  11. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Fluorescent diffuse photon density waves in homogenous and heterogenous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
  12. A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, and E. Gratton, “Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues,” Appl. Opt. 36, 116–124 (1997).
  13. A. Cerussi, S. Fantini, and E. Gratton, “Quantitative fluorescence spectroscopy in strongly scattering media containing multiple fluorophores,” in Biomedical Optical Spectroscopy and Diagnostics/Therapeutic Laser Applications, E. M. Sevick-Muraca, J. A. Izatt, and M. N. Ediger, eds., Vol. 22 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 70–75.
  14. H. Szmacinski and J. R. Lakowicz, “Frequency-domain lifetime measurements and sensing in highly scattering media,” Sens. Actuators B 30, 207–215 (1997).
  15. C. L. Hutchinson, J. R. Lakowicz, and E. M. Sevick-Muraca, “Fluorescence lifetime based sensing in tissues; a computational study,” Biophys. J. 68, 1574–1582 (1995).
  16. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
  17. J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
  18. J. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
  19. R. B. Thompson, J. K. Frisoli, and J. R. Lakowicz, “Phase fluorometry using a continuously modulated laser diode,” Anal. Chem. 64, 2075–2078 (1992).
  20. S. A. Soper and B. L. Legendre, “Error analysis of simple algorithms for determining fluorescence lifetimes in ultradilute dye solutions,” Appl. Spectrosc. 48, 400–405 (1994).
  21. E. Sevick-Muraca, G. Lopez, J. Reynolds, T. Troy, and C. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited