OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 38, Iss. 22 — Aug. 1, 1999
  • pp: 4939–4950

In Vivo Local Determination of Tissue Optical Properties: Applications to Human Brain

Frédéric Bevilacqua, Dominique Piguet, Pierre Marquet, Jeffrey D. Gross, Bruce J. Tromberg, and Christian Depeursinge  »View Author Affiliations


Applied Optics, Vol. 38, Issue 22, pp. 4939-4950 (1999)
http://dx.doi.org/10.1364/AO.38.004939


View Full Text Article

Acrobat PDF (185 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Local and superficial near-infrared (NIR) optical-property characterization of turbid biological tissues can be achieved by measurement of spatially resolved diffuse reflectance at small source–detector separations (<1.4 mm). However, in these conditions the inverse problem, i.e., calculation of localized absorption and the reduced scattering coefficients, is necessarily sensitive to the scattering phase function. This effect can be minimized if a new parameter of the phase function γ, which depends on the first and the second moments of the phase function, is known. If γ is unknown, an estimation of this parameter can be obtained by the measurement, but the uncertainty of the absorption coefficient is increased. A spatially resolved reflectance probe employing multiple detector fibers (0.3–1.4 mm from the source) is described. Monte Carlo simulations are used to determine γ, the reduced scattering and absorption coefficients from reflectance data. Probe performance is assessed by measurements on phantoms, the optical properties of which were measured by other techniques [frequency domain photon migration (FDPM) and spatially resolved transmittance]. Our results show that changes in the absorption coefficient, the reduced scattering coefficient, and γ can be measured to within ∓0.005 mm−1, ∓0.05 mm−1, and ∓0.2, respectively. In vivo measurements performed intraoperatively on a human skull and brain are reported for four NIR wavelengths (674, 811, 849, 956 nm) when the spatially resolved probe and FDPM are used. The spatially resolved probe shows optimum measurement sensitivity in the measurement volume immediately beneath the probe (typically 1 mm3 in tissues), whereas FDPM typically samples larger regions of tissues. Optical-property values for human skull, white matter, scar tissue, optic nerve, and tumors are reported that show distinct absorption and scattering differences between structures and a dependence on the phase-function parameter γ.

© 1999 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media
(290.4210) Scattering : Multiple scattering

Citation
Frédéric Bevilacqua, Dominique Piguet, Pierre Marquet, Jeffrey D. Gross, Bruce J. Tromberg, and Christian Depeursinge, "In Vivo Local Determination of Tissue Optical Properties: Applications to Human Brain," Appl. Opt. 38, 4939-4950 (1999)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-22-4939

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited