OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 38, Iss. 23 — Aug. 10, 1999
  • pp: 4967–4979

Noise propagation in wave-front sensing with phase diversity

Ludovic Meynadier, Vincent Michau, Marie-Thérèse Velluet, Jean-Marc Conan, Laurent M. Mugnier, and Gérard Rousset  »View Author Affiliations

Applied Optics, Vol. 38, Issue 23, pp. 4967-4979 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (1142 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The phase diversity technique is studied as a wave-front sensor to be implemented with widely extended sources. The wave-front phase expanded on the Zernike polynomials is estimated from a pair of images (in focus and out of focus) by use of a maximum-likelihood approach. The propagation of the photon noise in the images on the estimated phase is derived from a theoretical analysis. The covariance matrix of the phase estimator is calculated, and the optimal distance between the observation planes that minimizes the noise propagation is determined. The phase error is inversely proportional to the number of photons in the images. The noise variance on the Zernike polynomials increases with the order of the polynomial. These results are confirmed with both numerical and experimental validations. The influence of the spectral bandwidth on the phase estimator is also studied with simulations.

© 1999 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(100.3020) Image processing : Image reconstruction-restoration
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

Original Manuscript: September 11, 1998
Revised Manuscript: March 22, 1999
Published: August 10, 1999

Ludovic Meynadier, Vincent Michau, Marie-Thérèse Velluet, Jean-Marc Conan, Laurent M. Mugnier, and Gérard Rousset, "Noise propagation in wave-front sensing with phase diversity," Appl. Opt. 38, 4967-4979 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Rousset, “Wavefront sensing,” in Adaptive Optics for Astronomy, D. M. Alloin, J.-M. Mariotti, eds., Vol. 423 of NATO Asi Series C: Mathematical and Physical Sciences (Kluwer Academic, Dordrecht, The Netherlands, 1994). [CrossRef]
  2. O. Von der Lühe, “Wavefront error measurement technique using extended, incoherent light sources,” Opt. Eng. 278, 1078–1087 (1988).
  3. V. Michau, G. Rousset, J.-C. Fontanella, “Wavefront sensing from extended sources,” in Real Time and Post Facto Solar Image Correction (National Solar Observatory, Sunspot, N.M., 1992), pp. 124–128.
  4. R. Kupke, F. Roddier, D. L. Mickey, “Curvature-based wavefront sensor for use on extended patterns,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 519–527 (1994). [CrossRef]
  5. R. L. Kendrick, D. S. Acton, A. L. Duncan, “Phase-diversity wave-front sensor for imaging systems,” Appl. Opt. 33, 6533–6546 (1994). [CrossRef] [PubMed]
  6. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 829–832 (1982). [CrossRef]
  7. R. G. Paxman, J. R. Fienup, “Optical misalignment sensing and image reconstruction using phase diversity,” J. Opt. Soc. Am. A 5, 914–923 (1988). [CrossRef]
  8. R. G. Paxman, T. J. Schulz, J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072–1085 (1992). [CrossRef]
  9. N. Miller, A. Ling, “Imaging with phase diversity: experimental results,” in Digital Image Recovery and Synthesis II, P. S. Idell, ed., Proc. SPIE2029, 227–238 (1993). [CrossRef]
  10. R. A. Carreras, S. R. Restaino, G. D. Love, G. L. Tarr, J. S. Fender, “Phase diversity experimental results: deconvolution of ν Scorpii,” Opt. Commun. 130, 13–19 (1996). [CrossRef]
  11. M. G. Löfdahl, G. B. Scharmer, “Application of phase-diversity to solar images,” in Image Reconstruction and Restoration, T. J. Schulz, D. L. Snyder, eds., Proc. SPIE2302, 254–267 (1994). [CrossRef]
  12. J. H. Seldin, R. G. Paxman, “Phase-diverse speckle reconstruction of solar data,” in Image Reconstruction and Restoration, T. J. Schulz, D. L. Snyder, eds., Proc. SPIE2302, 268–280 (1994). [CrossRef]
  13. R. G. Paxman, J. H. Seldin, M. G. Löfdahl, G. B. Scharmer, C. U. Keller, “Evaluation of phase-diversity techniques for solar-image restoration,” Astrophys. J. 466, 1087–1099 (1996). [CrossRef]
  14. C. Roddier, F. Roddier, “Reconstruction of the Hubble Space Telescope mirror figure from out-of-focus stellar images,” in Space Astronomical Telescopes and Instruments, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE1494, 78–84 (1991). [CrossRef]
  15. J. R. Fienup, J. C. Marron, T. J. Schulz, J. H. Seldin, “Hubble Space Telescope characterized by using phase-retrieval algorithms,” Appl. Opt. 32, 1747–1767 (1993). [CrossRef] [PubMed]
  16. C. Roddier, F. Roddier, “Combined approach to the Hubble Space Telescope wave-front distortion analysis,” Appl. Opt. 32, 2992–3008 (1993). [CrossRef] [PubMed]
  17. B. L. Ellerbroek, B. J. Thelen, D. J. Lee, D. A. Carrara, R. G. Paxman, “Comparison of Shack–Hartmann wavefront sensing and phase-diverse phase retrieval,” in Adaptive Optics and Applications, R. K. Tyson, R. Q. Fugate, eds., Proc. SPIE3126, 307–320 (1997). [CrossRef]
  18. D. J. Lee, B. Welsh, M. Roggemann, “Cramer–Rao evaluation of phase diversity aberration sensing,” in Image Reconstruction and Restoration II, T. J. Schulz, ed., Proc. SPIE3170, 161–172 (1997). [CrossRef]
  19. J. R. Fienup, B. J. Thelen, R. G. Paxman, D. A. Carrara, “Comparison of phase-diversity and curvature wavefront sensing,” in Adaptive Optical Systems Technologies, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 930–940 (1998). [CrossRef]
  20. J. R. Fienup, C. C. Wackerman, “Phase retrieval stagnation problems and solutions,” J. Opt. Soc. Am. 3, 1897–1907 (1986). [CrossRef]
  21. R. A. Gonsalves, “Phase retrieval by differential intensity measurements,” J. Opt. Soc. Am. A 4, 166–170 (1987). [CrossRef]
  22. J. H. Seldin, J. R. Fienup, “Numerical investigation of the uniqueness of phase retrieval,” J. Opt. Soc. Am. A 7, 412–427 (1990). [CrossRef]
  23. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  24. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  25. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, in Numerical Recipes in C, 2nd ed. (Cambridge U. Press, New York, 1992).
  26. Y. Biraud, “A new approach for increasing the resolving power by data processing,” Astron. Astrophys. 1, 124–127 (1969).
  27. E. Thiébaut, J. M. Conan, “Strict a priori constraints for maximum-likelihood blind deconvolution,” J. Opt. Soc. Am. A 12, 485–492 (1995). [CrossRef]
  28. J. A. Fessler, “Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): applications to tomography,” IEEE Trans. Image Process. 5, 493–506 (1996). [CrossRef] [PubMed]
  29. L. Meynadier, “Analyse de surface d’onde pour le contrôle actif d’un télescope spatial,” Ph.D. dissertation (Université de Nice-Sophia Antipolis, Nice, France, 1997).
  30. D. R. Williams, J. Liang, D. T. Miller, “Adaptive optics for the human eye,” in Adaptive Optics, Vol. 13 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 145–147.
  31. G. Demoment, “Image reconstruction and restoration: overview of common estimation structures and problems,” IEEE Trans. Acoust. Speech Signal Process. 37, 2024–2036 (1989). [CrossRef]
  32. B. J. Thelen, R. G. Paxman, J. H. Seldin, D. R. Rice, “Bayes estimation of dynamic and fixed aberrations, and object from phase-diverse speckle data,” in Digital Image Recovery and Synthesis III, P. S. Idell, T. J. Schulz, eds., Proc. SPIE2827, 32–42 (1996). [CrossRef]
  33. L. M. Mugnier, J.-M. Conan, V. Michau, G. Rousset, “Imagerie à travers la turbulence par déconvolution myope multi-trame,” in Seizième Colloque sur le Traitement du Signal et des Images GRETSI (Groupe de Recherche et d’Études sur le Traitement du Signal et des Images, Grenoble, France, 1997), pp. 567–570.
  34. R. G. Paxman, B. J. Thelen, J. H. Seldin, “Phase-diversity correction of turbulence-induced space-variant blur,” Opt. Lett. 19, 1231–1233 (1994). [CrossRef] [PubMed]
  35. N. Baba, H. Tomita, N. Miura, “Iterative reconstruction method in phase-diversity imaging,” Appl. Opt. 33, 4428–4433 (1994). [CrossRef] [PubMed]
  36. L. Meynadier, V. Michau, M. T. Velluet, “Wavefront sensing by phase diversity,” in THEMIS Forum (Observatoire de Paris, Paris, 1996), pp. 205–210.
  37. R. G. Lane, “Blind deconvolution of speckle images,” J. Opt. Soc. Am. A 9, 1508–1514 (1992). [CrossRef]
  38. R. N. Bracewell, The Fourier Transform and its Applications, 2nd revised ed. (McGraw-Hill, New York, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited